login
A086732
Convolution of A000203 with partition function (A000041) of positive integers.
2
1, 5, 13, 29, 54, 97, 161, 257, 402, 604, 896, 1299, 1866, 2616, 3665, 5031, 6891, 9290, 12498, 16600, 22008, 28841, 37740, 48919, 63294, 81230, 104048, 132355, 168048, 212070, 267105, 334671, 418486, 520857, 647081, 800531, 988510, 1216159
OFFSET
1,2
COMMENTS
Another version of the convolution of A000203 but starting from A000041(0) = 1 is given by the nonzero terms of A066186. - Omar E. Pol, Feb 13 2021
LINKS
FORMULA
a(n) = (n+1)*A000041(n+1) - A000203(n+1). - Vladeta Jovovic, Apr 08 2006
a(n) = A066186(n+1) - A000203(n+1). - Omar E. Pol, Feb 13 2021
MATHEMATICA
Table[n PartitionsP[n]-DivisorSigma[1, n], {n, 2, 40}] (* Harvey P. Dale, Jun 28 2012 *)
PROG
(Magma) [ (n+1)*NumberOfPartitions(n+1)-SumOfDivisors(n+1): n in [1..38] ]; // Klaus Brockhaus, Jul 07 2009
(PARI) a(n) = (n+1)*numbpart(n+1) - sigma(n+1); \\ Michel Marcus, Feb 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Jul 29 2003
EXTENSIONS
More terms from Klaus Brockhaus, Jul 07 2009
Definition clarified by Omar E. Pol, Feb 13 2021
STATUS
approved