login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162329
Sum of all parts of the partitions of n, minus sigma(n).
2
0, 1, 5, 13, 29, 54, 97, 161, 257, 402, 604, 896, 1299, 1866, 2616, 3665, 5031, 6891, 9290, 12498, 16600, 22008, 28841, 37740, 48919, 63294, 81230, 104048, 132355, 168048, 212070, 267105, 334671, 418486, 520857, 647081, 800531, 988510, 1216159, 1493430
OFFSET
1,3
COMMENTS
Apart from the offset the same as A086732.
Sum of all parts of all partitions of n minus the total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 24 2014
FORMULA
a(n) = A066186(n) - A000203(n).
EXAMPLE
a(1) = 1 - 1 = 0;
a(2) = 4 - 3 = 1;
a(3) = 9 - 4 = 5;
a(6) = 66 - 12 = 54.
MAPLE
A066186 := proc(n) n*combinat[numbpart](n) ; end:
A000203 := proc(n) numtheory[sigma](n) ; end:
A162329 := proc(n) A066186(n)-A000203(n) ; end: seq(A162329(n), n=1..80) ; # R. J. Mathar, Aug 14 2009
MATHEMATICA
Table[Total[Flatten[IntegerPartitions[n]]]-DivisorSigma[1, n], {n, 40}] (* Harvey P. Dale, Mar 21 2013 *)
PROG
(PARI) a(n) = n*numbpart(n) - sigma(n); \\ Michel Marcus, Mar 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(6), a(8), a(24) corrected by R. J. Mathar, Aug 14 2009
STATUS
approved