login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240130
Least prime of the form prime(n)^2 + k^2, or 0 if none.
9
5, 13, 29, 53, 137, 173, 293, 397, 593, 857, 977, 1373, 1697, 1913, 2213, 2909, 3517, 3821, 4493, 5077, 5333, 6257, 7213, 7937, 9413, 10301, 10613, 11549, 11897, 13093, 16193, 17417, 18773, 19421, 22397, 22817, 24749, 26573, 27893, 30029
OFFSET
1,1
COMMENTS
The positive terms form a subsequence of A185086 = Fouvry-Iwaniec primes = primes of the form prime^2 + integer^2.
The values of k are A240131.
Is a(n) < a(n+1) for all n? (I have checked it for n <= 10^6.) Note that A240131 is far from being monotone.
LINKS
Stephan Baier and Liangyi Zhao, On Primes Represented by Quadratic Polynomials, Anatomy of Integers, CRM Proc. & Lecture Notes, Vol. 46, Amer. Math. Soc. 2008, pp. 169 - 166.
Étienne Fouvry and Henryk Iwaniec, Gaussian primes, Acta Arithmetica 79:3 (1997), pp. 249-287.
E.W. Weisstein, Fermat's 4n+1 Theorem, MathWorld.
FORMULA
a(n) == 1 (mod 4) if a(n) > 0.
a(n) > 0 if Bunyakovsky's conjecture is true.
a(n) <> a(m) if n <> m and a(n) > 0, by uniqueness in Fermat's 4n+1 Theorem.
a(n) = prime(n)^2 + A240131(n)^2 if a(n) > 0.
EXAMPLE
Prime(2) = 3 and 3^2 + 1^2 = 10 is not prime but 3^2 + 2^2 = 13 is prime, so a(2) = 13.
MAPLE
g:= proc(p) local k; for k from 2 by 2 do if isprime(p^2 + k^2) then return p^2+k^2 fi od end proc:
g(2):= 5:
seq(g(ithprime(i)), i=1..1000); # Robert Israel, Nov 04 2015
MATHEMATICA
Table[First[Select[Prime[n]^2 + Range[20]^2, PrimeQ]], {n, 40}]
PROG
(PARI) a(n) = {p = prime(n); k = 1 - p%2; inc = 2; while (!isprime(q=p^2+k^2), k += inc); q; } \\ Michel Marcus, Nov 04 2015
CROSSREFS
Sequence in context: A308464 A247903 A350687 * A005473 A086732 A162329
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Apr 07 2014
STATUS
approved