Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Nov 05 2015 02:11:31
%S 5,13,29,53,137,173,293,397,593,857,977,1373,1697,1913,2213,2909,3517,
%T 3821,4493,5077,5333,6257,7213,7937,9413,10301,10613,11549,11897,
%U 13093,16193,17417,18773,19421,22397,22817,24749,26573,27893,30029
%N Least prime of the form prime(n)^2 + k^2, or 0 if none.
%C The positive terms form a subsequence of A185086 = Fouvry-Iwaniec primes = primes of the form prime^2 + integer^2.
%C The values of k are A240131.
%C Is a(n) < a(n+1) for all n? (I have checked it for n <= 10^6.) Note that A240131 is far from being monotone.
%H Robert Israel, <a href="/A240130/b240130.txt">Table of n, a(n) for n = 1..10000</a>
%H Stephan Baier and Liangyi Zhao, <a href="http://arxiv.org/abs/math/0703284">On Primes Represented by Quadratic Polynomials</a>, Anatomy of Integers, CRM Proc. & Lecture Notes, Vol. 46, Amer. Math. Soc. 2008, pp. 169 - 166.
%H Étienne Fouvry and Henryk Iwaniec, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa79/aa7935.pdf">Gaussian primes</a>, Acta Arithmetica 79:3 (1997), pp. 249-287.
%H E.W. Weisstein, <a href="http://mathworld.wolfram.com/Fermats4nPlus1Theorem.html">Fermat's 4n+1 Theorem</a>, MathWorld.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Bunyakovsky_conjecture">Bunyakovsky's conjecture</a>
%F a(n) == 1 (mod 4) if a(n) > 0.
%F a(n) > 0 if Bunyakovsky's conjecture is true.
%F a(n) <> a(m) if n <> m and a(n) > 0, by uniqueness in Fermat's 4n+1 Theorem.
%F a(n) = prime(n)^2 + A240131(n)^2 if a(n) > 0.
%e Prime(2) = 3 and 3^2 + 1^2 = 10 is not prime but 3^2 + 2^2 = 13 is prime, so a(2) = 13.
%p g:= proc(p) local k; for k from 2 by 2 do if isprime(p^2 + k^2) then return p^2+k^2 fi od end proc:
%p g(2):= 5:
%p seq(g(ithprime(i)),i=1..1000); # _Robert Israel_, Nov 04 2015
%t Table[First[Select[Prime[n]^2 + Range[20]^2, PrimeQ]], {n, 40}]
%o (PARI) a(n) = {p = prime(n); k = 1 - p%2; inc = 2; while (!isprime(q=p^2+k^2), k += inc); q;} \\ _Michel Marcus_, Nov 04 2015
%Y Cf. A002144, A185086.
%K nonn
%O 1,1
%A _Jonathan Sondow_, Apr 07 2014