login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161975
Sum_{x=sum of prime factors of n-th composite..n-th composite} x.
2
4, 11, 21, 30, 34, 57, 69, 92, 108, 143, 174, 186, 175, 264, 280, 246, 342, 351, 420, 483, 470, 424, 564, 621, 531, 660, 765, 837, 885, 980, 781, 1121, 1134, 1209, 1136, 1242, 1430, 1420, 1518, 1422, 1246, 1764, 1425, 1938, 2014, 1992, 2091, 2136, 2090, 2394
OFFSET
1,1
EXAMPLE
4(=4), 11(=(2+3)+6), 22(=(2+2+2)+7+8), 30(=(3+3)+7+9), 34(=(2+5)+8+9+10), etc.
MAPLE
A002808 := proc(n) option remember ; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: A001414 := proc(n) pfs :=ifactors(n)[2] ; add(op(1, p)*op(2, p) , p=pfs) ; end: A046343 := proc(n) A001414(A002808(n)); end: A000217 := proc(n) n*(n+1)/2 ; end: A161975 := proc(n) A000217( A002808(n)) - A000217(A046343(n)-1) ; end: seq(A161975(n), n=1..90) ; # R. J. Mathar, Aug 03 2009
PROG
(PARI) a(n)=my(c=n+n\log(n+1), f); for(i=0, n-c+primepi(c), if(isprime(c++), i--)); f=factor(c); binomial(c+1, 2)-binomial(sum(i=1, #f[, 1], f[i, 1]*f[i, 2]), 2)
CROSSREFS
Cf. A002808.
Sequence in context: A345434 A297961 A240155 * A272042 A301135 A008052
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(3), a(12) and others corrected by R. J. Mathar, Aug 03 2009
Program by Charles R Greathouse IV, Oct 12 2009
STATUS
approved