login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A297961 a(1) = number of 1-digit primes (that is, 4: 2,3,5,7); then a(n) = number of distinct n-digit prime numbers obtained by alternately left- and right-concatenating a digit to the a(n-1) primes obtained in the previous iteration. 2
4, 11, 20, 53, 51, 100, 63, 76, 42, 43, 20, 13, 4, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

No 16-digit numbers can be obtained from the 15-digit number 889292677731979.

LINKS

Table of n, a(n) for n=1..15.

Prime Curios, 889292677731979

EXAMPLE

1-digit 2-digit 3-digit 4-digit ... 15-digit

---------------------------------------------------------------

2

3 13 131 2131

6131

137 2137

3137

9137

139 4139

23 233 5233

8233

239 2239

9239

43 431 5431

8431

9431

433 1433

3433

7433

9433

439 1439

9439

53

73 733 1733

3733

4733

6733

9733

739 3739

9739

83 839 5839

8839

9839

5

7 17 173 6173

9173

179 2179

5179

8179

37 373 1373

3373

4373

6373

379 6379

47 479 5479

9479

67 673 3673

4673

6673

7673

677 2677 889292677731979

3677

8677

9677

97 971 2971

6971

8971

977 6977

---------------------------------------------------------------

a(1) = 4, a(2) = 11, a(3) = 20, a(4) = 53, ..., a(15)= 1.

MATHEMATICA

Block[{b = 10, t}, t = Select[Range[b], CoprimeQ[#, b] &]; TakeWhile[Length /@ Fold[Function[{a, n}, Append[a, If[EvenQ[n], Join @@ Map[Function[k, Select[Map[Prepend[k, #] &, Range[9]], PrimeQ@ FromDigits[#, b] &]], Last[a]], Join @@ Map[Function[k, Select[Map[Append[k, #] &, t], PrimeQ@ FromDigits[#, b] &]], Last[a]]]]] @@ {#1, #2} &, {IntegerDigits[Prime@ Range@ PrimePi@ b, b]}, Range[2, 16]], # > 0 &]] (* Michael De Vlieger, Jan 20 2018 *)

PROG

(Python)

from sympy import isprime

def alst():

primes, alst = [2, 3, 5, 7], []

while len(primes) > 0:

alst.append(len(primes))

if len(alst)%2 == 1:

candidates = set(int(d+str(p)) for p in primes for d in "123456789")

else:

candidates = set(int(str(p)+d) for p in primes for d in "1379")

primes = [c for c in candidates if isprime(c)]

return alst

print(alst()) # Michael S. Branicky, Apr 11 2021

CROSSREFS

Cf. A050986, A050987, A297960, A298048.

Sequence in context: A075099 A240784 A345434 * A240155 A161975 A272042

Adjacent sequences: A297958 A297959 A297960 * A297962 A297963 A297964

KEYWORD

nonn,full,base,fini

AUTHOR

Seiichi Manyama, Jan 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 23:40 EDT 2023. Contains 361623 sequences. (Running on oeis4.)