login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297962
Take a prime, convert it to base 2. Remove its most significant digit and its least significant digit; repeat this process. a(n) is the least prime that, in the first n steps of this process, generates n primes.
0
13, 59, 631, 7039, 64063, 761087, 3619327, 74347519, 1577707519, 22200700927, 1668463173631, 290703062134783, 3413184213843967, 121597545150218239
OFFSET
1,1
COMMENTS
From Jon E. Schoenfield, Jan 11 2018: (Start)
a(15) <= 6937869050647642111;
a(16) <= 7088202090368908328959;
a(17) <= 348624306087955627410980863. (End)
FORMULA
Let C(p) be the result of removing the MSD and the LSD of a prime p. C(p) = (p - 2^floor(log_2(p)) - 1)/2.
EXAMPLE
a(1) = 13, because 13 in base 2 is 1101, 10 is the prime 2; and 13 is the least prime with this property.
a(2) = 59, because 59 = 111011_2, 1101_2 is the prime 13, 10_2 is the prime 2; and 59 is the least prime with this property.
a(3) = 631, because 631 = 1001110111_2, 111011_2 is the prime 59, 1101_2 is the prime 13, 10_2 is the prime 2; and 631 is the least prime with this property.
MAPLE
with(numtheory): P:=proc(q) local a, i, k, n, ok, x; x:=1;
for n from 1 to q do for k from x to q do
a:=convert(ithprime(k), binary, decimal);
ok:=1; for i from 1 to n do a:=trunc(a/10) mod 10^(ilog10(a)-1);
if not isprime(convert(a, decimal, binary)) then ok:=0; break; fi; od;
if ok=1 then x:=k; print(ithprime(k)); break; fi; od; od; end: P(10^10);
MATHEMATICA
With[{s = Map[LengthWhile[#, PrimeQ] &@ NestWhileList[((# - 2^Floor@ Log2@ #) - 1)/2 &, #, # > 2 &] &, Prime@ Range[2^18]]}, Map[Prime@ First@ FirstPosition[s, #] &, Range@ Max@ s]] (* Michael De Vlieger, Jan 10 2018 *)
PROG
(Java) private static BigInteger SearchAn() { BigInteger BIW, BICore; int tN=10; int j3; static final BigInteger BILim = new BigInteger("1000000000"); static final BigInteger BI2 = new BigInteger("2"); for (BIW=BI2; BIW.compareTo(BILim)<0; BIW=BIW.add(BI2)) { BICore = BIW; for (j3=1; j3<tN+1; j3++) { if (!(BICore.isProbablePrime(10))) break; else { BICore=((BICore.subtract(BI2.pow(BICore.bitLength()-1)).subtract(BI1))).divide(BI2); } } if (j3==tN+1) { return BIW; } return BigInteger.ZERO; } }
CROSSREFS
Sequence in context: A213567 A124864 A126400 * A354670 A220711 A295915
KEYWORD
nonn,base,hard,more
AUTHOR
EXTENSIONS
a(10)-a(14) from Jon E. Schoenfield, Jan 11 2018
STATUS
approved