login
A349900
Primes of the form x^2 + (y^2+1)^2.
2
5, 13, 17, 29, 37, 41, 53, 61, 89, 101, 109, 149, 173, 181, 197, 229, 257, 269, 281, 293, 349, 353, 389, 401, 433, 461, 509, 541, 577, 601, 613, 677, 701, 733, 757, 773, 797, 809, 829, 941, 1049, 1061, 1093, 1117, 1181, 1229, 1297, 1301
OFFSET
1,1
COMMENTS
Merikoski proved that there are infinitely many primes of this form, and that the order of growth of the sequence up to x is x^(3/4)/log x. (His method did not provide enough Type II information to prove that there is a C such that there are ~ C*x^(3/4)/log x.)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Jori Merikoski, The polynomials X^2+(Y^2+1)^2 and X^2+(Y^3+Z^3)^2 also capture their primes, arXiv:2112.03617 [math.NT], 2021.
FORMULA
a(n) ≍ (n log n)^(4/3).
PROG
(PARI) list(lim)=my(v=List()); lim\=1; for(y=0, sqrtint(sqrtint(lim-1)-1), my(t=(y^2+1)^2); forstep(x=2-y%2, sqrtint(lim-t), 2, my(p=x^2+t); if(isprime(p), listput(v, p)))); Set(v)
(PARI) is(n)=if(n<5 || !isprime(n), return(0)); for(y=0, sqrtint(sqrtint(n-1)-1), if(isprime(n-(y^2+1)^2), return(1))); 0
CROSSREFS
Subsequence of A002144.
Sequence in context: A319287 A192592 A357218 * A347163 A111055 A307096
KEYWORD
nonn
AUTHOR
STATUS
approved