OFFSET
1,1
COMMENTS
Pratt shows that this sequence is infinite, and gives an asymptotic formula for a weighting function of a particular subset (see Theorem 1.2). This holds for any choice of at most 3 digits; Pratt comments that by imposing extra conditions on the digits chosen, a more complicated sieve argument can be used to derive a similar result.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Kyle Pratt, Primes from sums of two squares and missing digits, Proceedings of the London Mathematical Society 3:120 (2020), pp. 770-830. arXiv:1806.02699 [math.NT]
EXAMPLE
113 = 7^2 + 8^2 is prime but not in this sequence because both 7 and 8 contain a digit from {7, 8, 9}.
557 = 14^2 + 19^2 is in this sequence because 557 is prime and 14 contains no digit from {7, 8, 9}.
PROG
(PARI) rd(n)=my(v=digits(n)); for(i=1, #v, if(v[i]>6, for(j=i, #v, v[j]=6); return(fromdigits(v, 7)))); fromdigits(v, 7)
list(lim)=my(v=List(), s=sqrtint(lim\=1), s7=rd(s), x2, p); for(w=1, s7, x2=fromdigits(digits(w, 7))^2; forstep(y=(x2%2)+1, sqrtint(lim-L2), 2, if(isprime(p=x2+y^2), listput(v, p)))); Set(v)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Charles R Greathouse IV, Oct 10 2018
STATUS
approved