login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319285
Number of series-reduced locally stable rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.
0
1, 2, 9, 69, 619, 7739, 109855, 1898230
OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally stable if no branch is a submultiset of any other branch of the same root.
EXAMPLE
The a(3) = 9 trees:
(1(11))
(111)
(1(12))
(2(11))
(112)
(1(23))
(2(13))
(3(12))
(123)
Examples of rooted trees that are not locally stable are ((11)(111)), ((11)(112)), ((12)(112)), ((12)(123)).
MATHEMATICA
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
stableQ[u_]:=Apply[And, Outer[#1==#2||!submultisetQ[#1, #2]&&!submultisetQ[#2, #1]&, u, u, 1], {0, 1}];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=gro[m]=If[Length[m]==1, {m}, Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m], Length[#]>1&])], stableQ]];
Table[Sum[Length[gro[m]], {m, Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n]}], {n, 5}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 16 2018
STATUS
approved