login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A319285
Number of series-reduced locally stable rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.
0
1, 2, 9, 69, 619, 7739, 109855, 1898230
OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally stable if no branch is a submultiset of any other branch of the same root.
EXAMPLE
The a(3) = 9 trees:
(1(11))
(111)
(1(12))
(2(11))
(112)
(1(23))
(2(13))
(3(12))
(123)
Examples of rooted trees that are not locally stable are ((11)(111)), ((11)(112)), ((12)(112)), ((12)(123)).
MATHEMATICA
submultisetQ[M_, N_]:=Or[Length[M]==0, MatchQ[{Sort[List@@M], Sort[List@@N]}, {{x_, Z___}, {___, x_, W___}}/; submultisetQ[{Z}, {W}]]];
stableQ[u_]:=Apply[And, Outer[#1==#2||!submultisetQ[#1, #2]&&!submultisetQ[#2, #1]&, u, u, 1], {0, 1}];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=gro[m]=If[Length[m]==1, {m}, Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m], Length[#]>1&])], stableQ]];
Table[Sum[Length[gro[m]], {m, Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n]}], {n, 5}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 16 2018
STATUS
approved