login
A316468
Matula-Goebel numbers of locally stable rooted trees, meaning no branch is a submultiset of any other branch of the same root.
10
1, 2, 3, 4, 5, 7, 8, 9, 11, 15, 16, 17, 19, 23, 25, 27, 31, 32, 33, 35, 45, 47, 49, 51, 53, 55, 59, 64, 67, 69, 75, 77, 81, 83, 85, 93, 95, 97, 99, 103, 119, 121, 125, 127, 128, 131, 135, 137, 141, 149, 153, 155, 161, 165, 175, 177, 187, 197, 201, 207, 209
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff its distinct prime indices are pairwise indivisible and already belong to the sequence.
EXAMPLE
Sequence of locally stable rooted trees preceded by their Matula-Goebel numbers begins:
1: o
2: (o)
3: ((o))
4: (oo)
5: (((o)))
7: ((oo))
8: (ooo)
9: ((o)(o))
11: ((((o))))
15: ((o)((o)))
16: (oooo)
17: (((oo)))
19: ((ooo))
23: (((o)(o)))
25: (((o))((o)))
27: ((o)(o)(o))
31: (((((o)))))
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Or[#==1, And[Select[Tuples[primeMS[#], 2], UnsameQ@@#&&Divisible@@#&]=={}, And@@#0/@primeMS[#]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 04 2018
STATUS
approved