OFFSET
0,2
COMMENTS
This is the case k = 9 of Sum_{i = 2..k} P(i,n) = (k - 1)*n*((k - 2)*n - (k - 6))/4, where P(k,n) = n*((k - 2)*n - (k - 4))/2 (see Crossrefs for similar sequences and "Square array in A139600" in Links section).
14*x + 9 is a square for x = a(n) or x = a(-n).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Bruno Berselli, Square array in A139600.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
O.g.f.: 4*x*(2 + 5*x)/(1 - x)^3.
E.g.f.: 2*x*(4 + 7*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 4*A218471(n).
MATHEMATICA
Table[2 n (7 n - 3), {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {0, 8, 44}, 50] (* Harvey P. Dale, Jan 24 2021 *)
PROG
(PARI) vector(50, n, n--; 2*n*(7*n-3))
(PARI) concat(0, Vec(4*x*(2 + 5*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, Jul 05 2018
(Sage) [2*n*(7*n-3) for n in (0..50)]
(Maxima) makelist(2*n*(7*n-3), n, 0, 50);
(GAP) List([0..50], n -> 2*n*(7*n-3));
(Magma) [2*n*(7*n-3): n in [0..50]];
(Python) [2*n*(7*n-3) for n in range(50)]
(Julia) [2*n*(7*n-3) for n in 0:50] |> println
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jul 04 2018
STATUS
approved