login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316466
a(n) = 2*n*(7*n - 3).
10
0, 8, 44, 108, 200, 320, 468, 644, 848, 1080, 1340, 1628, 1944, 2288, 2660, 3060, 3488, 3944, 4428, 4940, 5480, 6048, 6644, 7268, 7920, 8600, 9308, 10044, 10808, 11600, 12420, 13268, 14144, 15048, 15980, 16940, 17928, 18944, 19988, 21060, 22160, 23288, 24444, 25628, 26840
OFFSET
0,2
COMMENTS
This is the case k = 9 of Sum_{i = 2..k} P(i,n) = (k - 1)*n*((k - 2)*n - (k - 6))/4, where P(k,n) = n*((k - 2)*n - (k - 4))/2 (see Crossrefs for similar sequences and "Square array in A139600" in Links section).
14*x + 9 is a square for x = a(n) or x = a(-n).
FORMULA
O.g.f.: 4*x*(2 + 5*x)/(1 - x)^3.
E.g.f.: 2*x*(4 + 7*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 4*A218471(n).
MATHEMATICA
Table[2 n (7 n - 3), {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {0, 8, 44}, 50] (* Harvey P. Dale, Jan 24 2021 *)
PROG
(PARI) vector(50, n, n--; 2*n*(7*n-3))
(PARI) concat(0, Vec(4*x*(2 + 5*x)/(1 - x)^3 + O(x^40))) \\ Colin Barker, Jul 05 2018
(Sage) [2*n*(7*n-3) for n in (0..50)]
(Maxima) makelist(2*n*(7*n-3), n, 0, 50);
(GAP) List([0..50], n -> 2*n*(7*n-3));
(Magma) [2*n*(7*n-3): n in [0..50]];
(Python) [2*n*(7*n-3) for n in range(50)]
(Julia) [2*n*(7*n-3) for n in 0:50] |> println
CROSSREFS
Similar sequences (see the first comment): A000096 (k = 3), A045943 (k = 4), A049451 (k = 5), A033429 (k = 6), A167469 (k = 7), A152744 (k = 8), this sequence (k = 9), A152994 (k = 10).
Sequence in context: A075816 A290787 A188148 * A100583 A261996 A036464
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jul 04 2018
STATUS
approved