The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036464 Number of ways to place two nonattacking queens on an n X n board. 19
0, 0, 8, 44, 140, 340, 700, 1288, 2184, 3480, 5280, 7700, 10868, 14924, 20020, 26320, 34000, 43248, 54264, 67260, 82460, 100100, 120428, 143704, 170200, 200200, 234000, 271908, 314244, 361340, 413540, 471200, 534688, 604384 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-queens problem I. General theory, January 26, 2013. - N. J. A. Sloane, Feb 16 2013
S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv:1609.00853 [math.CO], Sep 03 2016.
I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
FORMULA
a(n) = C(n, 3)*(3*n-1).
G.f.: 4*x^3*(2+x)/(1-x)^5. - Colin Barker, May 02 2012
a(n) = 2*sum_{i=1..n-2} i(i + 1)^2. - Wesley Ivan Hurt, Mar 18 2014
E.g.f.: (exp(x) * x^3 * (8 + 3*x))/6. - Vaclav Kotesovec, Feb 15 2015
For n>0, a(n) = A163102(n-1) - A006331(n-1). - Antal Pinter, Sep 20 2015
MAPLE
f:=n->n^4/2 - 5*n^3/3 + 3*n^2/2 - n/3; [seq(f(n), n=1..200)]; # N. J. A. Sloane, Feb 16 2013
MATHEMATICA
f[k_] := 2 k; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 50}] (* A036464 *)
Table[a[n]/4, {n, 2, 50}] (* A000914 *)
(* Clark Kimberling, Dec 31 2011 *)
CoefficientList[Series[4 x^2 (2 + x) / (1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 8, 44, 140}, 50] (* Harvey P. Dale, Mar 26 2015 *)
CROSSREFS
Column k=2 of A348129.
Sequence in context: A316466 A100583 A261996 * A000938 A252871 A307044
KEYWORD
nonn,easy,nice
AUTHOR
Robert G. Wilson v, Raymond Bush (c17h21no4(AT)hotmail.com), Kirk Conely, N. J. A. Sloane
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)