OFFSET
1,3
COMMENTS
This is related to the no-3-in-line problem on an n X n grid.
REFERENCES
M. A. Adena, D. A. Holton and P. A. Kelly, Some thoughts on the no-three-in-line problem, pp. 6-17 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
R. K. Guy, Unsolved combinatorial problems, pp. 121-127 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
R. K. Guy and P. A. Kelly, The No-Three-Line Problem. Research Paper 33, Department of Mathematics, Univ. of Calgary, Calgary, Alberta, 1968. Condensed version in Canad. Math. Bull. Vol. 11, pp. 527-531, 1968.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (Terms n=2..59 from R. H. Hardin)
R. K. Guy and P. A. Kelly, The No-Three-Line Problem, Research Paper 33, Department of Mathematics, Univ. of Calgary, Calgary, Alberta, 1968. [Annotated scanned copy]
R. K. Guy and P. A. Kelly, The No-Three-Line Problem, condensed version in Canad. Math. Bull. Vol. 11, pp. 527-531, 1968. [Annotated scanned copy]
R. K. Guy, P. A. Kelly, N. J. A. Sloane, Correspondence, 1968-1971
FORMULA
a(n) = 2*Sum(Sum((n - k + 1)*(n - m + 1)*gcd(k - 1, m - 1), k, 2, n), m, 2, n) - n^2(n^2 - 1)/6. - Ignacio Larrosa Cañestro, May 23 2010
a(n) = binomial(n^2, 3) - A045996(n). - Ignacio Larrosa Cañestro, May 23 2010
EXAMPLE
a(3) = 8: the 3 rows, 3 columns and 2 diagonals of a 3 X 3 grid.
MAPLE
a:=n->2*sum(sum((n - k + 1)*(n - m + 1)*igcd(k - 1, m - 1), k= 2.. n), m= 2.. n) - n^2*(n^2 - 1)/6;
seq(a(n), n=2..30); # Dennis P. Walsh, Mar 02 2013
MATHEMATICA
a[n_] := 2*Sum[(n - k + 1)*(n - m + 1)*GCD[k - 1, m - 1], {m, 2, n}, {k, 2, n}] - n^2*((n^2 - 1)/6); Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jul 11 2012, after Ignacio Larrosa Cañestro *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Terms a(11) through a(30) from John W. Layman, Sep 21 2000
Typo in formula corrected by David Bevan, Jan 09 2012
Offset changed to 1 and initial 0 added. - N. J. A. Sloane, Jun 19 2020
STATUS
approved