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2
Let Sn be the set of n~ points with integer coordinates
(x,v), 1< x,y<n. Let f be the maximum cardinal of a subset T of
n
S such that no three points of T are collinear. Clearly f < 2n.
n n

For 2 ¢ mng 10 it is known ([2], [3] for n =8, [1] for n =10, also

755
69
92%

[4], [6]) that fn = 2n, and that this bound is attained in 1, 1, 4,5, 11, A F‘ ?

22,57,51 and 156 distinct configurations for these nine values of n.

On the other hand, P. Erdds [7] has pointed out that if n is prime,
. . 2

fn > n, since the n points (x,x ) reduced modulo n have no three

collinear. We give a probabilistic argument to support the conjecture

that there is only a finite number of solutions to the no-three-in-line

problem. More specifically, we conjecture that

(1) (?) £ o~ (202/3)" 0.
n

THEOREM. The number, t , of sets of 3 collinear points that
— n

can be chosen from S is
n =

4
tn=—3*2n4 log n + O(n").
™
Proof. The number of sets of 3 collinear points parallel to a
coordinate axis is
1 2
(2) 2n(3) =510 (m-1) (n-2).
3 3
The number of such sets parallel to x = J:y is
n n-1 n-2 3 1 2

L.t = - -1 -2) .

(3 2 +a (M ¢ (Y ()} = 70 (-1 (u-2)
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We next count the triples chosen from {{a +sp, b +sq):s=0,1,2,...},
where

(4) t<q<ps(y -1,

square brackets denoting integer part, and (p,q) = 1. Figurel
illustrates the case n=60, p=7, q=5. Define r = [(n- 1)/p], so
that r = 8 in this case. Points in regions marked 1 in Figure I,
are in lines originating in the rectangle 1 ¢agn- rp, 1g&¢bgn-rgqg,

each line containing r + 41 points. Those in Regions 2 have n- rp +1 <agp

2
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FIGURE 1

and 1<bgn-(r-1)q, and r points in each line. Triples arising
from Regions 1 and 2 should be counted 4 times, to allow for the
cases where one or both of p and q are negative. Triples arising from
Regions j (3 £ jg r) are counted 8 times, for the same reason, together
with the fact that they are each repeated (see the Regions 5' in Figure I).
These regions have n- (r +3 - j)p+1<agn-(r +2 - j)p and 1<bgq
except for j =3 where the range for a is p+1gagn- (r-1)p.

<
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The lines in these cases contain r +3 - j points. The required number

‘ of triples is thus

4{(n - mp)(n - 1) L D+ (r +p - m) (- (x - D)) +8{ (n - rp)q ()
3 3 3

T r+3-j
trq Z (g )
j=4

%r (r - 1) {6n2 - 4n(p + g)(r +1) +pg(r +1)(3r +2)},

SO

summed for p and g in the range (4), and augmented by (2) and (3)
that

t =%n(n— 1)(n - 2)(3n - 1)

n

[atn0)] pt ,
+ = = gr(r- 1) {6n” - 4n(p + q)(r +1) + pq(r +1) 3r +2)} .

p=2 g=1
(p, q)=1

Using Kuler's totient function, ¢(p), and its properties [5]

Z ¢lg) = 5

Pl 1 ™ el 6
Eptb(p), z ﬂ% = = logm + O(1),
q=1 p=1 P T

" we obtain

= %n(n— 1){n - 2) (3n - 1)

[llz(n—‘l)] 14 2 2
+ = Er(r - 1){12n" - 12np(r +1) +p (r + 1)(3r +2)} &(p)
p=2
[Y2(n-1)] .
- 2nt = e /%t o)
p=2
4 4)’

:‘—Z n" log n +O(n

and the theorem is proved.
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For large n, the probability that three points, chosen at random,
should be in line is thus

3 o /( 18 log n_
I ~
2n gn 2.2

s

and the probability that three such points should not be in line is

B 18 log n 1
1 ) +O(2)‘
m n

If we assume that the events are independent, the probability that 2n

points contain no three in line is 2
!
3
24
- +
18 log n 1 L2l Oln)
1 - + O (—) = e

2 2 2
™ n n

Hence, an estimate of the number of solutions to the no-three-in-line
problem is given by

2 —2411/112 eO(n) .

(5) o 1),

2
where C1 and <:2 are constants, with c1 = -2 +24/7 . The expressior

(5) supports the conjecture concerning the finiteness of the numbers of
solutions.
If we repeat this argument with kn points in place of 2n, the
. ) 3
corresponding value of ¢y in (5) is -2 + 3k /rrz, so that (5) tends to
Ve
zero as n— o, provided k > (2Tr2/3)/3= 1.873856, i.e. for large n,
)

2
we expect to be able to select approximately (2m /3)?n points with no

three in line, but no larger number.
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