|
|
A100583
|
|
Number of triangles in an n X n grid of squares with diagonals.
|
|
1
|
|
|
0, 8, 44, 124, 268, 492, 816, 1256, 1832, 2560, 3460, 4548, 5844, 7364, 9128, 11152, 13456, 16056, 18972, 22220, 25820, 29788, 34144, 38904, 44088, 49712, 55796, 62356, 69412, 76980, 85080, 93728, 102944, 112744, 123148, 134172, 145836
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (12*n^3+18*n^2+4*n+(-1)^n-1)/4. (For a proof see the Richeson link.)
a(n) = 4*Sum{i=1 to n}(i^2 + (n+1-i)*(n+1-round(i/2))).
G.f.: 4*x*(x+2)*(2*x+1) / ((x-1)^4*(x+1)). - Colin Barker, Aug 19 2014
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|