

A100581


Male of (1/(n+1), n/(1+n)) pair function used to get a dual population Fibonacci.


0



0, 1, 0, 1, 1, 3, 4, 7, 11, 18, 29, 47, 75, 123, 197, 321, 514, 836, 1343, 2181, 3508, 5692, 9167, 14865, 23959, 38838, 62635, 101503, 163773, 265344, 428291, 693791, 1120191, 1814345, 2930173, 4745365, 7665395, 12412755, 20054413, 32471888
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

These are rational functions and to get an integer popoulation a Floor[] function is necessary.(* if the Fibonacci is a rabbit population, then it has male and female components *) (* in this case the gfib (female) population is always larger or the same *) (* natural birth rate has the female popoulation slightly larger than the male in many mammals *) (* ratios of both populations still approach the golden mean *)


LINKS

Table of n, a(n) for n=0..39.


FORMULA

f[n_]:=(1/(n+1))^mod[n, 2]*(n/(n+1))^(1mod[n, 2]) fib[n_Integer?Positive] :=fib[n] =fib[n1]+fib[n2] fib[0]=0;fib[1] = 1; ffib[n_Integer?Positive] :=ffib[n] =ffib[n1]*f[n1]+ffib[n2]*f[n2] ffib[0]=0;ffib[1] = 1; a(n) = Floor[ffib[n]*fib[n]]


CROSSREFS

Sequence in context: A319106 A250296 A279785 * A093090 A193686 A000204
Adjacent sequences: A100578 A100579 A100580 * A100582 A100583 A100584


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Nov 29 2004


STATUS

approved



