login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165618
a(n) = binomial(n+8,8) - 1.
1
0, 8, 44, 164, 494, 1286, 3002, 6434, 12869, 24309, 43757, 75581, 125969, 203489, 319769, 490313, 735470, 1081574, 1562274, 2220074, 3108104, 4292144, 5852924, 7888724, 10518299, 13884155, 18156203, 23535819, 30260339, 38608019, 48903491
OFFSET
0,2
LINKS
E. Pérez Herrero, Binomial Matrix (I) partitions, Psychedelic Geometry Blogspot, 09/22/09
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = binomial(n+8,8) - 1 = A000581(n+8) - 1.
a(n) = Sum_{r=1..n} binomial(8,r)*binomial(n,r).
a(n) = n(n+9)(n^6 + 27n^5 + 303n^4 + 1809n^3 + 6168n^2 + 11772n + 12176)/40320.
MATHEMATICA
Table[ -1 + Binomial[n + 8, 8], {n, 0, 30}]
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 8, 44, 164, 494, 1286, 3002, 6434, 12869}, 40] (* Harvey P. Dale, Nov 18 2013 *)
PROG
(PARI) vector(100, n, binomial(n+7, 8)-1) \\ Charles R Greathouse IV, May 27 2011
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Charles R Greathouse IV, May 27 2011
STATUS
approved