login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165621 Riordan array (c(x^2)*(1+xc(x^2)), xc(x^2)). 1
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 5, 5, 4, 4, 1, 1, 5, 9, 9, 5, 5, 1, 1, 14, 14, 14, 14, 6, 6, 1, 1, 14, 28, 28, 20, 20, 7, 7, 1, 1, 42, 42, 48, 48, 27, 27, 8, 8, 1, 1, 42, 90, 90, 75, 75, 35, 35, 9, 9, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Inverse of A165620. Row sums are A001405(n+1). Diagonal sums are A026008.

Factors as (1+xc(x^2),x)*(c(x^2),xc(x^2)). Transforms (-2)^n to a sequence with Hankel transform F(2n+1).

In general, the Hankel transform of r^n by this matrix with have a Hankel transform with g.f. (1-x)/(1+(r-1)x+x^2).

LINKS

Table of n, a(n) for n=0..65.

P. Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6

FORMULA

Number triangle T(n,k)=sum{j=0..n, b(n-j)*sum{i=0..k, (-1)^(k-i)*C(k,i)*sum{m=0..i, C(i,m)*(C(i-m,m+k)-C(i-m,i+k+2))}}}

where b(n) is the sequence beginning with 1 followed by the aerated Catalan numbers: 1,1,0,1,0,2,0,5,0,14,...

EXAMPLE

Triangle begins

1,

1, 1,

1, 1, 1,

2, 2, 1, 1,

2, 3, 3, 1, 1,

5, 5, 4, 4, 1, 1,

5, 9, 9, 5, 5, 1, 1,

14, 14, 14, 14, 6, 6, 1, 1,

14, 28, 28, 20, 20, 7, 7, 1, 1,

42, 42, 48, 48, 27, 27, 8, 8, 1, 1

The production array of this matrix begins

1, 1,

0, 0, 1,

1, 1, 0, 1,

-1, 0, 1, 0, 1,

1, 0, 0, 1, 0, 1,

-1, 0, 0, 0, 1, 0, 1,

1, 0, 0, 0, 0, 1, 0, 1,

-1, 0, 0, 0, 0, 0, 1, 0, 1,

1, 0, 0, 0, 0, 0, 0, 1, 0, 1

MATHEMATICA

(* The function RiordanArray is defined in A256893. *)

nmax = 10;

M = PadRight[#, nmax+1]& /@ RiordanArray[(1-#)/(1-#^4)&, #/(1+#^2)&, nmax+1];

T = Inverse[M];

Table[T[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 16 2019 *)

PROG

(Sage) # Algorithm of L. Seidel (1877)

# Prints the first n rows of the signed version of the triangle.

def Signed_A165621_triangle(n) :

    D = [0]*(n+4); D[1] = 1

    b = False; h = 3

    for i in range(2*n) :

        if b :

            for k in range(h, 0, -1) : D[k] += D[k-1]

            h += 1

        else :

            for k in range(1, h, 1) : D[k] -= D[k+1]

        if b : print [D[z] for z in (2..h-2)]

        b = not b

Signed_A165621_triangle(11) # Peter Luschny, May 01 2012

CROSSREFS

Sequence in context: A305825 A324029 A136605 * A284321 A004739 A156282

Adjacent sequences:  A165618 A165619 A165620 * A165622 A165623 A165624

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Sep 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 16:33 EDT 2019. Contains 327078 sequences. (Running on oeis4.)