|
|
A026008
|
|
a(n) = T(n, floor(n/2)), where T = Catalan triangle (A008315).
|
|
2
|
|
|
1, 1, 2, 3, 5, 9, 14, 28, 42, 90, 132, 297, 429, 1001, 1430, 3432, 4862, 11934, 16796, 41990, 58786, 149226, 208012, 534888, 742900, 1931540, 2674440, 7020405, 9694845, 25662825, 35357670, 94287120, 129644790, 347993910, 477638700, 1289624490, 1767263190
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the number of Catalan paths in Quadrant I from (0,0) to (n, gcd(n,2)). - Clark Kimberling, Jun 26 2004
|
|
LINKS
|
|
|
FORMULA
|
a(2n) = C(2n+2, n+1)/(n+2), a(2n+1) = 3C(2n+2, n)/(n+3). - Ralf Stephan, Apr 30 2004
Conjecture: (n+5)*a(n) +(n+3)*a(n-1) +(-5*n-9)*a(n-2) -4*n*a(n-3) +4*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 10 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|