OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..100 of the triangle, flattened
FORMULA
T(n, k) = binomial(n, k) - binomial(n, k-3). - Darko Marinov (marinov(AT)lcs.mit.edu), May 17 2001
Sum_{k=0..floor((n+2)/2)} T(n, k) = A026010(n). - G. C. Greubel, Mar 18 2021
EXAMPLE
From Jonathon Kirkpatrick, Jul 01 2016: (Start)
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3;
1, 4, 6, 3;
1, 5, 10, 9;
1, 6, 15, 19, 9;
1, 7, 21, 34, 28;
1, 8, 28, 55, 62, 28;
1, 9, 36, 83, 117, 90;
1, 10, 45, 119, 200, 207, 90;
1, 11, 55, 164, 319, 407, 297;
1, 12, 66, 219, 483, 726, 704, 297;
1, 13, 78, 285, 702, 1209, 1430, 1001;
... (End)
MATHEMATICA
T[n_, k_]:= Binomial[n, k] - Binomial[n, k-3];
Join[{1}, Table[T[n, k], {n, 14}, {k, 0, Floor[(n+2)/2]}]//Flatten] (* G. C. Greubel, Mar 18 2021 *)
PROG
(Sage) [1]+flatten([[binomial(n, k) - binomial(n, k-3) for k in (0..(n+2)//2)] for n in (1..15)]) # G. C. Greubel, Mar 18 2021
(Magma) [1] cat [Binomial(n, k) - Binomial(n, k-3): k in [0..Floor((n+2)/2)], n in [1..15]]; // G. C. Greubel, Mar 18 2021
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
STATUS
approved