login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026011
Expansion of Product_{m>=1} (1 + q^m)^(2*m).
12
1, 2, 5, 14, 30, 68, 145, 298, 600, 1182, 2280, 4318, 8064, 14824, 26917, 48292, 85675, 150466, 261762, 451328, 771739, 1309362, 2205109, 3687904, 6127155, 10116074, 16602508, 27093582, 43974355, 71003224
OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/2) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
CROSSREFS
Column k=2 of A277938.
Sequence in context: A047133 A031874 A120328 * A212393 A056358 A336229
KEYWORD
nonn
STATUS
approved