OFFSET
0,2
COMMENTS
In general, if g.f. = Product_{m>=1} (1+x^m)^(t*m) and t>=1, then a(n) ~ 2^(-2/3 - t/12) * exp((3/2)^(4/3) * t^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * t^(1/6) * Zeta(3)^(1/6) / (3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.
FORMULA
a(n) ~ exp(2^(-2/3) * 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Aug 17 2015
G.f.: exp(4*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1+x^k)^(4*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved