login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022632 Expansion of Product_{m>=1} (1 + m*q^m)^4. 2
1, 4, 14, 48, 137, 380, 998, 2488, 5996, 14020, 31868, 70616, 153389, 326248, 681914, 1402880, 2841769, 5678316, 11201956, 21833480, 42081245, 80264752, 151572328, 283577152, 525894397, 967100700, 1764378830, 3194682272, 5742739237, 10252117308, 18182247316 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -4, g(n) = -n. - Seiichi Manyama, Dec 29 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: exp(4*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018

MATHEMATICA

CoefficientList[Take[Expand[Product[(1 + k x^k)^4, {k, 40}]], 40], x] (* Vincenzo Librandi, Jan 24 2018 *)

PROG

(MAGMA) Coefficients(&*[(1+m*x^m)^4:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Jan 24 2018

(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^4)) \\ G. C. Greubel, Feb 16 2018

CROSSREFS

Column k=4 of A297321.

Sequence in context: A264816 A332610 A015651 * A027906 A047135 A331319

Adjacent sequences:  A022629 A022630 A022631 * A022633 A022634 A022635

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 07:55 EST 2022. Contains 350454 sequences. (Running on oeis4.)