login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A022635
Expansion of Product_{m>=1} (1 + m*q^m)^7.
2
1, 7, 35, 154, 588, 2065, 6790, 21071, 62447, 177863, 489279, 1305402, 3389603, 8587999, 21280436, 51674728, 123161500, 288539664, 665292642, 1511359766, 3386065697, 7488093282, 16357998447, 35324428405, 75453678433, 159512035137, 333918915120, 692516812176, 1423479123640
OFFSET
0,2
LINKS
FORMULA
G.f.: exp(7*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^7, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 17 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^7)) \\ G. C. Greubel, Feb 17 2018
(Magma) Coefficients(&*[(1+m*x^m)^7:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 17 2018
CROSSREFS
Column k=7 of A297321.
Sequence in context: A215510 A240423 A094825 * A336602 A370391 A217274
KEYWORD
nonn
STATUS
approved