login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022635
Expansion of Product_{m>=1} (1 + m*q^m)^7.
2
1, 7, 35, 154, 588, 2065, 6790, 21071, 62447, 177863, 489279, 1305402, 3389603, 8587999, 21280436, 51674728, 123161500, 288539664, 665292642, 1511359766, 3386065697, 7488093282, 16357998447, 35324428405, 75453678433, 159512035137, 333918915120, 692516812176, 1423479123640
OFFSET
0,2
LINKS
FORMULA
G.f.: exp(7*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^7, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 17 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^7)) \\ G. C. Greubel, Feb 17 2018
(Magma) Coefficients(&*[(1+m*x^m)^7:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 17 2018
CROSSREFS
Column k=7 of A297321.
Sequence in context: A215510 A240423 A094825 * A336602 A370391 A217274
KEYWORD
nonn
STATUS
approved