|
|
A240423
|
|
Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4
|
|
1
|
|
|
7, 35, 151, 684, 3140, 14357, 65592, 299916, 1371831, 6274812, 28701623, 131290186, 600577492, 2747320414, 12567582702, 57490483260, 262991159980, 1203058704494, 5503421428414, 25175545976671, 115166223186735, 526831101821167
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 2 of A240427
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 8*a(n-1) -20*a(n-2) +34*a(n-3) -84*a(n-4) +92*a(n-5) -68*a(n-6) +222*a(n-7) +13*a(n-8) -251*a(n-9) +25*a(n-10) -495*a(n-11) +485*a(n-12) -44*a(n-13) -180*a(n-14) +554*a(n-15) -648*a(n-16) +14*a(n-17) +152*a(n-18) -190*a(n-19) -140*a(n-20) +397*a(n-21) -273*a(n-22) +75*a(n-23) +167*a(n-24) -136*a(n-25) +27*a(n-26)
|
|
EXAMPLE
|
Some solutions for n=4
..0..0....2..2....3..2....2..0....0..0....3..3....2..0....2..0....2..0....0..2
..3..3....2..2....2..1....2..2....0..2....3..3....0..2....2..2....0..0....2..0
..3..2....0..0....3..1....3..2....0..0....2..1....0..2....2..1....2..2....2..0
..0..3....0..3....0..2....3..3....2..0....3..1....2..2....0..2....2..0....3..1
|
|
CROSSREFS
|
Sequence in context: A121163 A223621 A215510 * A094825 A022635 A336602
Adjacent sequences: A240420 A240421 A240422 * A240424 A240425 A240426
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Apr 04 2014
|
|
STATUS
|
approved
|
|
|
|