|
|
A240427
|
|
T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4
|
|
5
|
|
|
3, 7, 7, 16, 35, 16, 38, 151, 151, 38, 90, 684, 1312, 684, 90, 212, 3140, 11573, 11573, 3140, 212, 500, 14357, 103021, 203213, 103021, 14357, 500, 1180, 65592, 917629, 3577618, 3577618, 917629, 65592, 1180, 2784, 299916, 8183512, 63110993
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
....3.......7.........16...........38............90............212
....7......35........151..........684..........3140..........14357
...16.....151.......1312........11573........103021.........917629
...38.....684......11573.......203213.......3577618.......63110993
...90....3140.....103021......3577618.....125356095.....4404092335
..212...14357.....917629.....63110993....4404092335...309034856157
..500...65592....8183512...1115948342..155205128280.21764140662553
.1180..299916...73035143..19752407566.5477493001109
.2784.1371831..652120094.349830659344
.6568.6274812.5824185148
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..84
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-3)
k=2: [order 26]
|
|
EXAMPLE
|
Some solutions for n=3 k=4
..2..2..0..2....3..2..3..2....2..2..2..0....2..2..2..2....2..0..2..0
..2..2..2..0....3..1..2..1....2..0..2..2....2..0..2..2....2..2..2..2
..0..0..0..0....2..2..3..2....2..0..2..2....2..0..2..2....3..2..0..1
|
|
CROSSREFS
|
Column 1 is A239040
Sequence in context: A098581 A238997 A240260 * A239047 A229521 A263337
Adjacent sequences: A240424 A240425 A240426 * A240428 A240429 A240430
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Apr 04 2014
|
|
STATUS
|
approved
|
|
|
|