login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217274
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=7.
8
0, 1, 7, 35, 154, 637, 2548, 9996, 38759, 149205, 571781, 2184910, 8333871, 31750824, 120875944, 459957169, 1749692735, 6654580387, 25306064602, 96226175941, 365880389868, 1391138718116, 5289228800247, 20109822277181, 76457523763621, 290689756066542
OFFSET
0,3
COMMENTS
This is the Berndt-type sequence number 18 for the argument 2*Pi/7 defined by the relation
a(n)*sqrt(7) = c(4)*s(1)^(2n+1) + c(2)*s(4)^(2n+1) + c(1)*s(2)^(2n+1) = (1/s(4))*s(1)^(2n+2) + (1/s(2))*s(4)^(2n+2) + (1/s(1))*s(2)^(2n+2), where c(j) := 2*cos(2*Pi*j/7) and s(j) := 2*sin(2*Pi*j/7) (for the sums of the respective even powers see A094429). For the proof of this formula see the Witula/Slota and Witula references.
The definitions of the other Berndt-type sequences for the argument 2*Pi/7 (with numbers from 1 to 17) are in the cross references.
We note that all numbers of the form a(n)*7^(-floor((n+1)/3)) = A217444(n) are integers.
It can be proved that Sum_{k=2..n}a(k) = 7*(a(n-1) - a(n-2)).
LINKS
R. Witula, Ramanujan type trigonometric formulas, Demonstratio Math., Vol. XLV, No. 4, 2012, pp. 789-796.
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
FORMULA
G.f.: x/(1-7*x+14*x^2-7*x^3).
EXAMPLE
Writing c(j) as cj and s(k) as sk,
we have 7*sqrt(7) = c4*s1^5 + c2*s4^5 + c1*s2^5
and c4*s1^13 + c2*s4^13 + c1*s2^13 = 4(c4*s1^11 + c2*s4^11 + c1*s2^11).
We note that a(9) = 87*a(3)*a(2)^2 and a(11) = 2*a(3)*a(5)*a(2)^2.
MATHEMATICA
LinearRecurrence[{7, -14, 7}, {0, 1, 7}, 30]
CoefficientList[Series[x/(1 - 7*x + 14*x^2 - 7*x^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 16 2017 *)
PROG
(Maxima)
a[0]:0$
a[1]:1$
a[2]:7$
a[n]:=7*a[n-1] - 14*a[n-2] + 7*a[n-3];
makelist(a[n], n, 0, 25); /* Martin Ettl, Oct 11 2012 */
(PARI) concat(0, Vec(x/(1-7*x+14*x^2-7*x^3) + O(x^40))) \\ Michel Marcus, Jul 25 2015
(Magma) I:=[0, 1, 7]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 26 2015
KEYWORD
nonn,easy
AUTHOR
Roman Witula, Sep 29 2012
STATUS
approved