login
A215143
a(n) = 7*a(n-1) -14*a(n-2) +7*a(n-3), with a(0)=1, a(1)=2, a(2)=7.
17
1, 2, 7, 28, 112, 441, 1715, 6615, 25382, 97069, 370440, 1411788, 5375839, 20458921, 77833217, 296038498, 1125816895, 4281011812, 16277915640, 61891962377, 235320000363, 894697938743, 3401649302758, 12933013979445, 49170893188704, 186945601728004, 710757805310287
OFFSET
0,2
COMMENTS
The Berndt-type sequence number 3 for the argument 2Pi/7 (see A215007 and A215008 for the respective sequences numbers 1 and 2) is defined by the following relations: sqrt(7) *a(n) = s(1)*s(2)^(2n) + s(2)*s(4)^(2n) + s(4)*s(1)^(2n) = s(4)*s(1)^(2n) + s(1)*s(2)^(2n) + s(2)*s(4)^(2n), where s(j) := 2*sin(2*Pi*j/7).
REFERENCES
R. Witula, Complex numbers, Polynomials and Fractial Partial Decompositions, T.3, Silesian Technical University Press, Gliwice 2010 (in Polish).
LINKS
B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
FORMULA
G.f.: (1-5*x+7*x^2)/(1-7*x+14*x^2-7*x^3).
MATHEMATICA
LinearRecurrence[{7, -14, 7}, {1, 2, 7}, 40]
PROG
(PARI) Vec((1-5*x+7*x^2)/(1-7*x+14*x^2-7*x^3) + O(x^30)) \\ Michel Marcus, Apr 19 2016
(Magma) I:=[1, 2, 7]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) + 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
CROSSREFS
Sequence in context: A099488 A289607 A068944 * A289158 A012855 A224066
KEYWORD
nonn,easy
AUTHOR
Roman Witula, Aug 04 2012
STATUS
approved