|
|
A215143
|
|
a(n) = 7*a(n-1) -14*a(n-2) +7*a(n-3), with a(0)=1, a(1)=2, a(2)=7.
|
|
17
|
|
|
1, 2, 7, 28, 112, 441, 1715, 6615, 25382, 97069, 370440, 1411788, 5375839, 20458921, 77833217, 296038498, 1125816895, 4281011812, 16277915640, 61891962377, 235320000363, 894697938743, 3401649302758, 12933013979445, 49170893188704, 186945601728004, 710757805310287
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The Berndt-type sequence number 3 for the argument 2Pi/7 (see A215007 and A215008 for the respective sequences numbers 1 and 2) is defined by the following relations: sqrt(7) *a(n) = s(1)*s(2)^(2n) + s(2)*s(4)^(2n) + s(4)*s(1)^(2n) = s(4)*s(1)^(2n) + s(1)*s(2)^(2n) + s(2)*s(4)^(2n), where s(j) := 2*sin(2*Pi*j/7).
|
|
REFERENCES
|
R. Witula, Complex numbers, Polynomials and Fractial Partial Decompositions, T.3, Silesian Technical University Press, Gliwice 2010 (in Polish).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1-5*x+7*x^2)/(1-7*x+14*x^2-7*x^3).
|
|
MATHEMATICA
|
LinearRecurrence[{7, -14, 7}, {1, 2, 7}, 40]
|
|
PROG
|
(PARI) Vec((1-5*x+7*x^2)/(1-7*x+14*x^2-7*x^3) + O(x^30)) \\ Michel Marcus, Apr 19 2016
(Magma) I:=[1, 2, 7]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) + 7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 19 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|