login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224066
Number of smooth Schubert varieties of type C_n.
0
1, 2, 7, 28, 114, 472, 1988, 8480, 36474, 157720, 684404, 2976994, 12971206, 56587676, 247097170, 1079749976, 4720841314, 20649303934, 90353041092, 395459463960, 1731251197242, 7580521689750, 33197447406682, 145400339328566, 636901149067534, 2790082285204966
OFFSET
0,2
COMMENTS
Characterized as the signed permutations avoiding the list of patterns: '((1 -2) (-2 -1 -3) (3 -2 1) (3 -2 -1) (-3 2 -1) (-3 -2 1) (-3 -2 -1)(-2 -4 3 1) (3 4 1 2) (3 4 -1 2) (-3 4 1 2) (-3 4 -1 2)(-3 -4 -1 -2) (4 -1 3 -2) (4 2 3 1) (4 2 3 -1) (-4 2 3 1))
LINKS
S. C. Billey, Pattern Avoidance and Rational Smoothness of Schubert varieties, Advances in Math, vol. 139 (1998) pp. 141-156.
E. Richmond and W. Slofstra, Staircase diagrams and enumeration of smooth Schubert varieties, arXiv:1510.06060 [math.CO], 2015; J. Combin. Ser. A, Vol 150 (2017) pp. 328-376.
FORMULA
G.f.: ((1-7*x+15*x^2-11*x^3-2*x^4+5*x^5)+(x-x^2-x^3+3*x^4-x^5)*sqrt(1-4*x))/((1-x)^2*(1-6*x+8*x^2-4*x^3)). - Edward Richmond, Apr 06 2021
PROG
(PARI) seq(n)={Vec(((1-7*x+15*x^2-11*x^3-2*x^4+5*x^5)+(x-x^2-x^3+3*x^4-x^5)*sqrt(1-4*x + O(x^n)))/((1-x)^2*(1-6*x+8*x^2-4*x^3)))} \\ Andrew Howroyd, Apr 06 2021
CROSSREFS
Cf. A061539.
Sequence in context: A215143 A289158 A012855 * A150646 A364145 A128611
KEYWORD
nonn,easy
AUTHOR
Sara Billey, Apr 02 2013
EXTENSIONS
a(0)=1 prepended and a(11) and beyond added by Edward Richmond, Apr 05 2021
STATUS
approved