OFFSET
0,2
COMMENTS
For our purposes, for n > 0 fixed we define the k-th n-bonacci number T(n,k) as equal to 0 for k <= 0, equal to 1 for k=1, and then equal to the sum of the previous n numbers for k > 1. For n=2, then, we get T(2,k) equal to F(n) = A000045(n), the Fibonacci numbers. For n=3, then, T(3,k) is the tribonacci numbers, and so on.
a(n) is thus defined as Sum_{k=1..2*n} T(n,k).
LINKS
Index entries for linear recurrences with constant coefficients, signature (8,-20,16).
FORMULA
a(n) = (2*4^n - (n-1)*2^n)/4 for n>=1.
a(n) = Sum_{i=1..2*n} A092921(n,i).
G.f.: -x*(12*x^2-9*x+2)/((4*x-1)*(2*x-1)^2). - Alois P. Heinz, Jul 11 2023
E.g.f.: exp(2*x)*(1 - 2*x - cosh(2*x) + 5*sinh(2*x))/4. - Stefano Spezia, Jul 12 2023
EXAMPLE
For n=3, a(3) is the sum of the first 6 nonzero tribonacci numbers, found at A000073. This gives a(3) = 1 + 1 + 2 + 4 + 7 + 13 = 28.
MATHEMATICA
T[n_, k_] := SeriesCoefficient[Series[x/(1 - Sum[x^i, {i, 1, n}]), {x, 0, k + 1}], k]; Table[Sum[T[n, k], {k, 1, 2n}], {n, 1, 30}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Muhammad Adam Dombrowski and Greg Dresden, Jul 10 2023
STATUS
approved