login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232970 Expansion of (1-3*x)/(1-5*x+3*x^2+x^3). 3
1, 2, 7, 28, 117, 494, 2091, 8856, 37513, 158906, 673135, 2851444, 12078909, 51167078, 216747219, 918155952, 3889371025, 16475640050, 69791931223, 295643364940, 1252365390981, 5305104928862, 22472785106427, 95196245354568, 403257766524697, 1708227311453354, 7236167012338111, 30652895360805796 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1.

Hermann Stamm-Wilbrandt, 6 interlaced bisections

Index entries for linear recurrences with constant coefficients, signature (5,-3,-1).

FORMULA

a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3). - N. J. A. Sloane, Jun 23 2017

a(n) = (Fibonacci(3*n+1) + 1)/2 = Sum_{k=0..n} Fibonacci(3*k-1). - Ehren Metcalfe, Apr 15 2019

a(2*n) = A294262(2*n); a(2*n+1) = A254627(2*n+2). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019

MATHEMATICA

LinearRecurrence[{5, -3, -1}, {1, 2, 7}, 30] (* Vincenzo Librandi, Jun 24 2017 *)

PROG

(MAGMA) I:=[1, 2, 7]; [n le 3 select I[n] else 5*Self(n-1)- 3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2017

(PARI) Vec((1-3*x)/(1-5*x+3*x^2+x^3) + O(x^30)) \\ Felix Fröhlich, Apr 15 2019

(Sage) [(fibonacci(3*n+1) +1)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019

CROSSREFS

Sequence in context: A150646 A128611 A061539 * A116078 A150647 A150648

Adjacent sequences:  A232967 A232968 A232969 * A232971 A232972 A232973

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 05 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 09:28 EST 2020. Contains 338833 sequences. (Running on oeis4.)