login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254627 Indices of centered pentagonal numbers (A005891) that are also triangular numbers (A000217). 6
1, 2, 11, 28, 189, 494, 3383, 8856, 60697, 158906, 1089155, 2851444, 19544085, 51167078, 350704367, 918155952, 6293134513, 16475640050, 112925716859, 295643364940, 2026369768941, 5305104928862, 36361730124071, 95196245354568, 652484772464329 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also positive integers y in the solutions to x^2 - 5*y^2 + x + 5*y - 2 = 0, the corresponding values of x being A254626.

Also indices of centered pentagonal numbers (A005891) that are also hexagonal numbers (A000384). - Colin Barker, Feb 11 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Hermann Stamm-Wilbrandt, 6 interlaced bisections

Index entries for linear recurrences with constant coefficients, signature (1,18,-18,-1,1).

FORMULA

a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).

G.f.: x*(1+x-9*x^2-x^3)/((1-x)*(1+4*x-x^2)*(1-4*x-x^2)).

a(n) = (10 - sqrt(5)*(2-sqrt(5))^n - 5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + sqrt(5)*(2+sqrt(5))^n + (-2-sqrt(5))^n*(-5+2*sqrt(5)))/20. - Colin Barker, Jun 06 2016

a(2*n+2) = A232970(2*n+1); a(2*n+1) = A110679(2*n). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019

a(n) = (2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4. - G. C. Greubel, Apr 19 2019

EXAMPLE

2 is in the sequence because the 2nd centered pentagonal number is 6, which is also the 3rd triangular number.

MATHEMATICA

CoefficientList[Series[x (x^3 + 9 x^2 - x - 1)/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 25}], x] (* Michael De Vlieger, Jun 06 2016 *)

LinearRecurrence[{1, 18, -18, -1, 1}, {1, 2, 11, 28, 189}, 30] (* Harvey P. Dale, Apr 23 2017 *)

PROG

(PARI) Vec(x*(x^3+9*x^2-x-1)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^30))

(PARI) {a(n) = (2 +(1+3*(-1)^n)*fibonacci(3*n) - 2*(-1)^n*fibonacci(3*n+1))/4}; \\ G. C. Greubel, Apr 19 2019

(MAGMA) [(2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4 : n in [1..30]]; // G. C. Greubel, Apr 19 2019

(Sage) [(2 +(1+3*(-1)^n)*fibonacci(3*n) -2*(-1)^n*fibonacci(3*n+1))/4 for n in (1..30)] # G. C. Greubel, Apr 19 2019

CROSSREFS

Cf. A000217, A005891, A254626, A254628.

Cf. A000384, A254962.

Sequence in context: A277361 A034534 A220833 * A206583 A045493 A116038

Adjacent sequences:  A254624 A254625 A254626 * A254628 A254629 A254630

KEYWORD

nonn,easy

AUTHOR

Colin Barker, Feb 03 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 10:13 EDT 2019. Contains 324234 sequences. (Running on oeis4.)