Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 08 2022 08:46:11
%S 1,2,11,28,189,494,3383,8856,60697,158906,1089155,2851444,19544085,
%T 51167078,350704367,918155952,6293134513,16475640050,112925716859,
%U 295643364940,2026369768941,5305104928862,36361730124071,95196245354568,652484772464329
%N Indices of centered pentagonal numbers (A005891) that are also triangular numbers (A000217).
%C Also positive integers y in the solutions to x^2 - 5*y^2 + x + 5*y - 2 = 0, the corresponding values of x being A254626.
%C Also indices of centered pentagonal numbers (A005891) that are also hexagonal numbers (A000384). - _Colin Barker_, Feb 11 2015
%H Colin Barker, <a href="/A254627/b254627.txt">Table of n, a(n) for n = 1..1000</a>
%H Hermann Stamm-Wilbrandt, <a href="/A254627/a254627_1.svg">6 interlaced bisections</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,18,-18,-1,1).
%F a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).
%F G.f.: x*(1+x-9*x^2-x^3)/((1-x)*(1+4*x-x^2)*(1-4*x-x^2)).
%F a(n) = (10 - sqrt(5)*(2-sqrt(5))^n - 5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + sqrt(5)*(2+sqrt(5))^n + (-2-sqrt(5))^n*(-5+2*sqrt(5)))/20. - _Colin Barker_, Jun 06 2016
%F a(2*n+2) = A232970(2*n+1); a(2*n+1) = A110679(2*n). See "6 interlaced bisections" link. - _Hermann Stamm-Wilbrandt_, Apr 18 2019
%F a(n) = (2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4. - _G. C. Greubel_, Apr 19 2019
%e 2 is in the sequence because the 2nd centered pentagonal number is 6, which is also the 3rd triangular number.
%t CoefficientList[Series[x (x^3 + 9 x^2 - x - 1)/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 25}], x] (* _Michael De Vlieger_, Jun 06 2016 *)
%t LinearRecurrence[{1,18,-18,-1,1},{1,2,11,28,189},30] (* _Harvey P. Dale_, Apr 23 2017 *)
%o (PARI) Vec(x*(x^3+9*x^2-x-1)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^30))
%o (PARI) {a(n) = (2 +(1+3*(-1)^n)*fibonacci(3*n) - 2*(-1)^n*fibonacci(3*n+1))/4}; \\ _G. C. Greubel_, Apr 19 2019
%o (Magma) [(2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4 : n in [1..30]]; // _G. C. Greubel_, Apr 19 2019
%o (Sage) [(2 +(1+3*(-1)^n)*fibonacci(3*n) -2*(-1)^n*fibonacci(3*n+1))/4 for n in (1..30)] # _G. C. Greubel_, Apr 19 2019
%Y Cf. A000217, A005891, A254626, A254628.
%Y Cf. A000384, A254962.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Feb 03 2015