The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232968 Array read by antidiagonals: T(n,k) = number of lattice paths from (0,0) to (n,k) using steps (1,0), (0,1), (1,1), (-1,1) and whose points lie entirely in the integer rectangle of lattice points {(i, j): 0 <= i <= n, 0 <= j <= k}. 2
 1, 1, 1, 1, 4, 1, 1, 7, 12, 1, 1, 10, 33, 36, 1, 1, 13, 63, 143, 108, 1, 1, 16, 102, 341, 609, 324, 1, 1, 19, 150, 656, 1748, 2583, 972, 1, 1, 22, 207, 1115, 3860, 8773, 10945, 2916, 1, 1, 25, 273, 1745, 7376, 21756, 43653, 46367, 8748, 1, 1, 28, 348, 2573, 12809, 45801, 119948, 216434, 196417, 26244, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, Volume 30, Issue 6, pp 1427-1452. FORMULA Dziemianczuk gives a g.f. EXAMPLE Array begins: 1,1,1,1,1,1,1,1,1,... 1,4,12,36,108,324,972,2916,8748,... 1,7,33,143,609,2583,10945,46367,196417,... 1,10,63,341,1748,8773,43653,216434,1071483,... 1,13,102,656,3860,21756,119948,653612,3539052,... 1,16,150,1115,7376,45801,274243,1606727,9288000,... 1,19,207,1745,12809,86739,558967,3489601,21333553,... ... MAPLE b:= proc(x, y, m) option remember; `if`(x=0 and y=0, 1,       `if`(x>0, b(x-1, y, m), 0)+`if`(y>0, b(x, y-1, m), 0)+       `if`(x>0 and y>0, b(x-1, y-1, m), 0)+       `if`(x0, b(x+1, y-1, m), 0))     end: T:= (n, k)-> b(n, k, n): seq(seq(T(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Apr 03 2014 MATHEMATICA b[x_, y_, m_] := b[x, y, m] = If[x == 0 && y == 0, 1, If[x>0, b[x-1, y, m], 0] + If[y>0, b[x, y-1, m], 0] + If[x>0 && y>0, b[x-1, y-1, m], 0] + If[x0, b[x+1, y-1, m], 0]]; T[n_, k_] := b[n, k, n]; Table[Table[T[d-k, k], {k, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *) CROSSREFS Main diagonal gives A339654. Sequence in context: A073697 A209414 A193636 * A119673 A144447 A051455 Adjacent sequences:  A232965 A232966 A232967 * A232969 A232970 A232971 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Dec 05 2013 EXTENSIONS More terms from Alois P. Heinz, Apr 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 16:21 EST 2021. Contains 340246 sequences. (Running on oeis4.)