login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232968
Array read by antidiagonals: T(n,k) = number of lattice paths from (0,0) to (n,k) using steps (1,0), (0,1), (1,1), (-1,1) and whose points lie entirely in the integer rectangle of lattice points {(i, j): 0 <= i <= n, 0 <= j <= k}.
2
1, 1, 1, 1, 4, 1, 1, 7, 12, 1, 1, 10, 33, 36, 1, 1, 13, 63, 143, 108, 1, 1, 16, 102, 341, 609, 324, 1, 1, 19, 150, 656, 1748, 2583, 972, 1, 1, 22, 207, 1115, 3860, 8773, 10945, 2916, 1, 1, 25, 273, 1745, 7376, 21756, 43653, 46367, 8748, 1, 1, 28, 348, 2573, 12809, 45801, 119948, 216434, 196417, 26244, 1
OFFSET
0,5
LINKS
M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, Volume 30, Issue 6, pp 1427-1452.
FORMULA
Dziemianczuk gives a g.f.
EXAMPLE
Array begins:
1,1,1,1,1,1,1,1,1,...
1,4,12,36,108,324,972,2916,8748,...
1,7,33,143,609,2583,10945,46367,196417,...
1,10,63,341,1748,8773,43653,216434,1071483,...
1,13,102,656,3860,21756,119948,653612,3539052,...
1,16,150,1115,7376,45801,274243,1606727,9288000,...
1,19,207,1745,12809,86739,558967,3489601,21333553,...
...
MAPLE
b:= proc(x, y, m) option remember; `if`(x=0 and y=0, 1,
`if`(x>0, b(x-1, y, m), 0)+`if`(y>0, b(x, y-1, m), 0)+
`if`(x>0 and y>0, b(x-1, y-1, m), 0)+
`if`(x<m and y>0, b(x+1, y-1, m), 0))
end:
T:= (n, k)-> b(n, k, n):
seq(seq(T(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Apr 03 2014
MATHEMATICA
b[x_, y_, m_] := b[x, y, m] = If[x == 0 && y == 0, 1, If[x>0, b[x-1, y, m], 0] + If[y>0, b[x, y-1, m], 0] + If[x>0 && y>0, b[x-1, y-1, m], 0] + If[x<m && y>0, b[x+1, y-1, m], 0]]; T[n_, k_] := b[n, k, n]; Table[Table[T[d-k, k], {k, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A339654.
Sequence in context: A073697 A209414 A193636 * A119673 A144447 A051455
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 05 2013
EXTENSIONS
More terms from Alois P. Heinz, Apr 03 2014
STATUS
approved