login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193636
Triangle: T(n,k) = C(3n-2k,k), 0 <= k <= n.
3
1, 1, 1, 1, 4, 1, 1, 7, 10, 1, 1, 10, 28, 20, 1, 1, 13, 55, 84, 35, 1, 1, 16, 91, 220, 210, 56, 1, 1, 19, 136, 455, 715, 462, 84, 1, 1, 22, 190, 816, 1820, 2002, 924, 120, 1, 1, 25, 253, 1330, 3876, 6188, 5005, 1716, 165, 1, 1, 28, 325, 2024, 7315, 15504, 18564
OFFSET
0,5
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
FORMULA
T(n,k) = C(3n-2k,k), 0 <= k <= n.
G.f. as triangle: (1-x*y)^2/(1 - x - 3*x*y + 3*x^2*y^2 - x^3*y^3). - Robert Israel, Nov 06 2018
T(n,k) = A102547(3*n,k). - R. J. Mathar, Apr 26 2024
EXAMPLE
First 5 rows:
1;
1, 1;
1, 4, 1;
1, 7, 10, 1;
1, 10, 28, 20, 1; [Corrected by Robert Israel, Nov 06 2018]
MAPLE
seq(seq(binomial(3*n-2*k, k), k=0..n), n=0..10); # Robert Israel, Nov 06 2018
MATHEMATICA
p[n_, k_] := Binomial[3 n - 2 k, k];
Table[p[n, k], {n, 0, 9}, {k, 0, n}] (* A193636 *)
Flatten[%]
PROG
(Magma) /* As triangle */[[Binomial(3*n-2*k, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 07 2018
CROSSREFS
Cf. A193635.
Sequence in context: A146771 A073697 A209414 * A232968 A119673 A144447
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 01 2011
STATUS
approved