login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144447
Triangle T(n, k) = T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1), with T(n, 1) = T(n, n) = 1, read by rows.
3
1, 1, 1, 1, 4, 1, 1, 7, 13, 1, 1, 10, 34, 49, 1, 1, 13, 64, 160, 211, 1, 1, 16, 103, 361, 781, 994, 1, 1, 19, 151, 679, 1981, 3967, 4963, 1, 1, 22, 208, 1141, 4162, 10891, 20815, 25780, 1, 1, 25, 274, 1774, 7756, 24790, 60463, 112021, 137803, 1
OFFSET
1,5
FORMULA
T(n, k) = T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1), with T(n, 1) = T(n, n) = 1.
From G. C. Greubel, Mar 09 2022: (Start)
T(n, 2) = (3*n) - 5.
T(n, 3) = (1/2!)*((3*n)^2 - 13*(3*n) + 38).
T(n, 4) = (1/3!)*((3*n)^3 - 24*(3*n)^2 + 195*(3*n) - 606).
T(n, 5) = (1/4!)*((3*n)^4 - 38*(3*n)^3 + 579*(3*n)^2 - 4422*(3*n) + 13704). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 7, 13, 1;
1, 10, 34, 49, 1;
1, 13, 64, 160, 211, 1;
1, 16, 103, 361, 781, 994, 1;
1, 19, 151, 679, 1981, 3967, 4963, 1;
1, 22, 208, 1141, 4162, 10891, 20815, 25780, 1;
1, 25, 274, 1774, 7756, 24790, 60463, 112021, 137803, 1;
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, T[n-1, k]+T[n, k-1]+T[n-1, k-1]+T[n-2, k-1]];
Table[T[n, k], {n, 15}, {k, n}]//Flatten
PROG
(Sage)
def T(n, k): return 1 if (k==1 or k==n) else T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1) # A144447
flatten([[T(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 06 2022
CROSSREFS
Sequence in context: A193636 A232968 A119673 * A051455 A346875 A289511
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Mar 06 2022
STATUS
approved