|
|
A144448
|
|
First bisection of A061039.
|
|
3
|
|
|
0, 16, 40, 8, 112, 160, 8, 280, 352, 16, 520, 616, 80, 832, 952, 40, 1216, 1360, 56, 1672, 1840, 224, 2200, 2392, 32, 2800, 3016, 40, 3472, 3712, 440, 4216, 4480, 176, 5032, 5320, 208, 5920, 6232, 728, 6880, 7216, 280, 7912, 8272, 320, 9016, 9400, 1088, 10192, 10600, 136, 11440, 11872, 152
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
From Paschen spectrum of hydrogen.
All numbers are multiples of 8.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
|
|
FORMULA
|
a(n) = A061039(2*n+1).
From G. C. Greubel, Mar 06 2022: (Start)
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81).
a(n) = 8*A178978(n). (End)
|
|
MATHEMATICA
|
Table[Numerator[1/3^2 - 1/(2*n+1)^2], {n, 100}] (* G. C. Greubel, Mar 06 2022 *)
|
|
PROG
|
(Sage) [numerator(1/9 -1/(2*n+1)^2) for n in (1..100)] # G. C. Greubel, Mar 06 2022
|
|
CROSSREFS
|
Cf. A061039, A178978.
Sequence in context: A253152 A305362 A197603 * A070584 A205072 A185798
Adjacent sequences: A144445 A144446 A144447 * A144449 A144450 A144451
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul Curtz, Oct 06 2008
|
|
EXTENSIONS
|
Formula index corrected, extended by R. J. Mathar, Dec 02 2008
|
|
STATUS
|
approved
|
|
|
|