login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144448
First bisection of A061039.
3
0, 16, 40, 8, 112, 160, 8, 280, 352, 16, 520, 616, 80, 832, 952, 40, 1216, 1360, 56, 1672, 1840, 224, 2200, 2392, 32, 2800, 3016, 40, 3472, 3712, 440, 4216, 4480, 176, 5032, 5320, 208, 5920, 6232, 728, 6880, 7216, 280, 7912, 8272, 320, 9016, 9400, 1088, 10192, 10600, 136, 11440, 11872, 152
OFFSET
1,2
COMMENTS
From Paschen spectrum of hydrogen.
All numbers are multiples of 8.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = A061039(2*n+1).
From G. C. Greubel, Mar 06 2022: (Start)
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81).
a(n) = 8*A178978(n). (End)
MATHEMATICA
Table[Numerator[1/3^2 - 1/(2*n+1)^2], {n, 100}] (* G. C. Greubel, Mar 06 2022 *)
PROG
(Sage) [numerator(1/9 -1/(2*n+1)^2) for n in (1..100)] # G. C. Greubel, Mar 06 2022
CROSSREFS
Sequence in context: A253152 A305362 A197603 * A070584 A205072 A185798
KEYWORD
nonn
AUTHOR
Paul Curtz, Oct 06 2008
EXTENSIONS
Formula index corrected, extended by R. J. Mathar, Dec 02 2008
STATUS
approved