login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144450
Second bisection of A061039.
1
7, 1, 55, 91, 5, 187, 247, 35, 391, 475, 7, 667, 775, 11, 1015, 1147, 143, 1435, 1591, 65, 1927, 2107, 85, 2491, 2695, 323, 3127, 3355, 133, 3835, 4087, 161, 4615, 4891, 575, 5467, 5767, 75, 6391, 6715, 87, 7387, 7735, 899, 8455, 8827, 341, 9595, 9991, 385, 10807, 11227, 1295, 12091, 12535
OFFSET
1,1
COMMENTS
Related to the Paschen spectrum of hydrogen. Contains only odd numbers. The sequence read modulo 9 is "full" and contains all numbers from 0 to 8.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = A061039(2*n+2).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - G. C. Greubel, Mar 06 2022
MATHEMATICA
Numerator[1/9 - 1/(2*Range[2, 100])^2] (* G. C. Greubel, Mar 06 2022 *)
PROG
(Sage) [numerator(1/9 -1/(2*n+2)^2) for n in (1..100)] # G. C. Greubel, Mar 06 2022
CROSSREFS
Sequence in context: A218017 A075502 A052104 * A051339 A134141 A350202
KEYWORD
nonn
AUTHOR
Paul Curtz, Oct 06 2008
EXTENSIONS
Formula index corrected, extended by R. J. Mathar, Dec 02 2008
STATUS
approved