login
A350202
Number T(n,k) of nodes in the k-th connected component of all endofunctions on [n] when components are ordered by increasing size; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
2
1, 7, 1, 61, 19, 1, 709, 277, 37, 1, 9911, 4841, 811, 61, 1, 167111, 91151, 19706, 1876, 91, 1, 3237921, 1976570, 486214, 60229, 3739, 127, 1, 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1, 1780353439, 1257567127, 380291461, 62248939, 5971291, 340729, 11197, 217, 1
OFFSET
1,2
LINKS
EXAMPLE
Triangle T(n,k) begins:
1;
7, 1;
61, 19, 1;
709, 277, 37, 1;
9911, 4841, 811, 61, 1;
167111, 91151, 19706, 1876, 91, 1;
3237921, 1976570, 486214, 60229, 3739, 127, 1;
71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1;
...
MAPLE
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(g(i)^j*
b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
(n, i$j, n-i*j)), j=0..n/i)))
end:
T:= (n, k)-> b(n, 1, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..10);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][g[i]^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
T[n_, k_] := b[n, 1, k][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
CROSSREFS
Column k=1 gives A350157.
Row sums give A007778.
T(n+1,n) gives A003215 for n>=1.
Sequence in context: A144450 A051339 A134141 * A237111 A281620 A321187
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 19 2021
STATUS
approved