OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = a(n-1) + 24*(3*n+1) = a(n-1) + 72*n + 24, a(0)=16.
From G. C. Greubel, Mar 06 2022: (Start)
G.f.: 8*(2 + 8*x - x^2)/(1-x)^3.
E.g.f.: 4*(4 + 24*x + 9*x^2)*exp(x). (End)
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 1/12.
Sum_{n>=0} (-1)^n/a(n) = Pi/(18*sqrt(3)) + log(2)/18 - 1/12. (End)
MATHEMATICA
Table[36n^2+60n+16, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {16, 112, 280}, 40] (* Harvey P. Dale, Apr 04 2020 *)
PROG
(Magma) [36*n^2 + 60*n + 16: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
(PARI) a(n)=36*n^2+60*n+16 \\ Charles R Greathouse IV, Jun 17 2017
(Sage) [(6*n+5)^2 - 9 for n in (0..40)] # G. C. Greubel, Mar 06 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 06 2008
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved