OFFSET
0,2
COMMENTS
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (31.61).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
Richard E. Borcherds, Automorphic forms with singularities on Grassmannians, arXiv:alg-geom/9609022, 1996-1997; Invent. Math. 132 (1998), 491-562.
B. Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, v.7 no.3, 257-274.
FORMULA
a(0)=1; for n>0, a(n) = 16*sum_{0<d|n}(-1)^d d^3.
G.f.: Product_{n>=1} ((1-q^n)/(1+q^n))^8 [Fine]
Expansion of phi(-q)^8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 15 2014
Expansion of eta(q)^16 / eta(q^2)^8 in powers of q.
Euler transform of period 2 sequence [ -16, -8, ...]. - Michael Somos, Apr 10 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u*v * (u - 2*v + 16*w) - 16 * u*w^2. - Michael Somos, Apr 10 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 256 (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007331. - Michael Somos, Jan 11 2009
a(n) = (-1)^n * A000143(n).
Convolution square of A096727. - Michael Somos, Jun 15 2014
EXAMPLE
G.f. = 1 - 16*q + 112*q^2 - 448*q^3 + 1136*q^4 - 2016*q^5 + 3136*q^6 - 5504*q^7 + ...
MAPLE
a_list := proc(len) series(JacobiTheta4(0, x)^8, x, len+1); seq(coeff(%, x, j), j=0..len) end: a_list(33); # Peter Luschny, Mar 14 2017
MATHEMATICA
a[0] = 1; a[n_] := 16*Sum[(-1)^d*d^3, {d, Divisors[n]}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Feb 06 2012, after Pari *)
QP = QPochhammer; s = QP[q]^16/QP[q^2]^8 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 16 * sumdiv( n, d, (-1)^d * d^3))};
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k) / (1 + x^k), 1 + x * O(x^n))^8, n))};
(PARI) {a(n) = local(A); if( n<0, 0, A = x^n * O(x); polcoeff( (eta(x + A)^2 / eta(x^2 + A))^8, n))}; /* Michael Somos, Jan 11 2009 */
(Sage) A = ModularForms( Gamma0(4), 4, prec=34) . basis(); A[0] - 16*A[1] + 112*A[2]; # Michael Somos, Jun 15 2014
(Python)
from sympy import divisors
def a(n): return 1 if n==0 else 16*sum((-1)**d*d**3 for d in divisors(n))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
(Julia) # JacobiTheta4 is defined in A002448.
A035016List(len) = JacobiTheta4(len, 8)
A035016List(34) |> println # Peter Luschny, Mar 12 2018
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
Barry Brent (barryb(AT)primenet.com)
STATUS
approved