login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035016
Fourier coefficients of E_{0,4}.
13
1, -16, 112, -448, 1136, -2016, 3136, -5504, 9328, -12112, 14112, -21312, 31808, -35168, 38528, -56448, 74864, -78624, 84784, -109760, 143136, -154112, 149184, -194688, 261184, -252016, 246176, -327040, 390784, -390240, 395136, -476672, 599152, -596736
OFFSET
0,2
COMMENTS
E_{0,4} is unique normalized entire modular form of weight 4 for \Gamma_0(2) with a zero at zero. Also |a(n)| matches expansion of theta_3(z)^8 (A000143).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (31.61).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
Richard E. Borcherds, Automorphic forms with singularities on Grassmannians, arXiv:alg-geom/9609022, 1996-1997; Invent. Math. 132 (1998), 491-562.
B. Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, v.7 no.3, 257-274.
FORMULA
a(0)=1; for n>0, a(n) = 16*sum_{0<d|n}(-1)^d d^3.
G.f.: Product_{n>=1} ((1-q^n)/(1+q^n))^8 [Fine]
Expansion of phi(-q)^8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 15 2014
Expansion of eta(q)^16 / eta(q^2)^8 in powers of q.
Euler transform of period 2 sequence [ -16, -8, ...]. - Michael Somos, Apr 10 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u*v * (u - 2*v + 16*w) - 16 * u*w^2. - Michael Somos, Apr 10 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 256 (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007331. - Michael Somos, Jan 11 2009
a(n) = (-1)^n * A000143(n).
Convolution square of A096727. - Michael Somos, Jun 15 2014
EXAMPLE
G.f. = 1 - 16*q + 112*q^2 - 448*q^3 + 1136*q^4 - 2016*q^5 + 3136*q^6 - 5504*q^7 + ...
MAPLE
a_list := proc(len) series(JacobiTheta4(0, x)^8, x, len+1); seq(coeff(%, x, j), j=0..len) end: a_list(33); # Peter Luschny, Mar 14 2017
MATHEMATICA
a[0] = 1; a[n_] := 16*Sum[(-1)^d*d^3, {d, Divisors[n]}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Feb 06 2012, after Pari *)
QP = QPochhammer; s = QP[q]^16/QP[q^2]^8 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 16 * sumdiv( n, d, (-1)^d * d^3))};
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k) / (1 + x^k), 1 + x * O(x^n))^8, n))};
(PARI) {a(n) = local(A); if( n<0, 0, A = x^n * O(x); polcoeff( (eta(x + A)^2 / eta(x^2 + A))^8, n))}; /* Michael Somos, Jan 11 2009 */
(Sage) A = ModularForms( Gamma0(4), 4, prec=34) . basis(); A[0] - 16*A[1] + 112*A[2]; # Michael Somos, Jun 15 2014
(Python)
from sympy import divisors
def a(n): return 1 if n==0 else 16*sum((-1)**d*d**3 for d in divisors(n))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
(Julia) # JacobiTheta4 is defined in A002448.
A035016List(len) = JacobiTheta4(len, 8)
A035016List(34) |> println # Peter Luschny, Mar 12 2018
CROSSREFS
Sequence in context: A371114 A279425 A144449 * A000143 A258546 A205964
KEYWORD
sign,easy,nice
AUTHOR
Barry Brent (barryb(AT)primenet.com)
STATUS
approved