The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035014 a(n) contains n digits (either '3' or '4') and is divisible by 2^n. 30
 4, 44, 344, 3344, 33344, 433344, 3433344, 33433344, 333433344, 3333433344, 43333433344, 343333433344, 3343333433344, 33343333433344, 433343333433344, 3433343333433344, 43433343333433344, 443433343333433344, 3443433343333433344, 43443433343333433344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If (n-1)st term is divisible by 2^n, then n-th term begins with a 4. If not, then n-th term begins with a 3. Proof of conjecture that a(n) ends with a(n-1): If a(n) is divisible by 2^n, then a(n) is divisible by 2^(n-1), so a(n)-k*10^(n-1) is divisible by 2^(n-1) for integer k, but if k is first digit of a(n) then a(n)-k*10^(n-1) is an (n-1)-digit number made up of 3s and 4s and divisible by 2^(n-1) and so must be a(n-1). - Henry Bottomley, Feb 14 2000 LINKS Ray Chandler, Table of n, a(n) for n = 1..1000 (first 100 terms from Jon E. Schoenfield) FORMULA a(n) = a(n-1) + 10^(n-1)*(4-[a(n-1)/2^(n-1) mod 2]), i.e., a(n) ends with a(n-1). - Henry Bottomley, Feb 14 2000 MAPLE A035014 := proc(n) option remember ; local pre; if n = 1 then 4; else pre := procname(n-1) ; pre+10^(n-1)*(4-modp(pre/2^(n-1), 2)) ; end if; end proc: # R. J. Mathar, May 02 2014 PROG (PARI) a(n) = if (n==1, 4, a(n-1) + 10^(n-1)*(4-(a(n-1)/2^(n-1) % 2))); \\ Michel Marcus, Apr 07 2017 CROSSREFS Cf. A050620, A050621, A050622, A023402. Sequence in context: A354646 A081078 A220920 * A259989 A030987 A341590 Adjacent sequences: A035011 A035012 A035013 * A035015 A035016 A035017 KEYWORD nonn,base AUTHOR J. Lowell EXTENSIONS Corrected and extended by Patrick De Geest, Jun 15 1999 More terms from Henry Bottomley, Feb 14 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 02:28 EDT 2024. Contains 375813 sequences. (Running on oeis4.)