|
|
A035014
|
|
a(n) contains n digits (either '3' or '4') and is divisible by 2^n.
|
|
30
|
|
|
4, 44, 344, 3344, 33344, 433344, 3433344, 33433344, 333433344, 3333433344, 43333433344, 343333433344, 3343333433344, 33343333433344, 433343333433344, 3433343333433344, 43433343333433344, 443433343333433344, 3443433343333433344, 43443433343333433344
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If (n-1)st term is divisible by 2^n, then n-th term begins with a 4. If not, then n-th term begins with a 3.
Proof of conjecture that a(n) ends with a(n-1): If a(n) is divisible by 2^n, then a(n) is divisible by 2^(n-1), so a(n)-k*10^(n-1) is divisible by 2^(n-1) for integer k, but if k is first digit of a(n) then a(n)-k*10^(n-1) is an (n-1)-digit number made up of 3s and 4s and divisible by 2^(n-1) and so must be a(n-1). - Henry Bottomley, Feb 14 2000
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1) + 10^(n-1)*(4-[a(n-1)/2^(n-1) mod 2]), i.e., a(n) ends with a(n-1). - Henry Bottomley, Feb 14 2000
|
|
MAPLE
|
option remember ;
local pre;
if n = 1 then
4;
else
pre := procname(n-1) ;
pre+10^(n-1)*(4-modp(pre/2^(n-1), 2)) ;
end if;
|
|
PROG
|
(PARI) a(n) = if (n==1, 4, a(n-1) + 10^(n-1)*(4-(a(n-1)/2^(n-1) % 2))); \\ Michel Marcus, Apr 07 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|