login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) contains n digits (either '3' or '4') and is divisible by 2^n.
30

%I #24 Jun 13 2020 14:51:12

%S 4,44,344,3344,33344,433344,3433344,33433344,333433344,3333433344,

%T 43333433344,343333433344,3343333433344,33343333433344,

%U 433343333433344,3433343333433344,43433343333433344,443433343333433344,3443433343333433344,43443433343333433344

%N a(n) contains n digits (either '3' or '4') and is divisible by 2^n.

%C If (n-1)st term is divisible by 2^n, then n-th term begins with a 4. If not, then n-th term begins with a 3.

%C Proof of conjecture that a(n) ends with a(n-1): If a(n) is divisible by 2^n, then a(n) is divisible by 2^(n-1), so a(n)-k*10^(n-1) is divisible by 2^(n-1) for integer k, but if k is first digit of a(n) then a(n)-k*10^(n-1) is an (n-1)-digit number made up of 3s and 4s and divisible by 2^(n-1) and so must be a(n-1). - _Henry Bottomley_, Feb 14 2000

%H Ray Chandler, <a href="/A035014/b035014.txt">Table of n, a(n) for n = 1..1000</a> (first 100 terms from Jon E. Schoenfield)

%F a(n) = a(n-1) + 10^(n-1)*(4-[a(n-1)/2^(n-1) mod 2]), i.e., a(n) ends with a(n-1). - _Henry Bottomley_, Feb 14 2000

%p A035014 := proc(n)

%p option remember ;

%p local pre;

%p if n = 1 then

%p 4;

%p else

%p pre := procname(n-1) ;

%p pre+10^(n-1)*(4-modp(pre/2^(n-1),2)) ;

%p end if;

%p end proc: # _R. J. Mathar_, May 02 2014

%o (PARI) a(n) = if (n==1, 4, a(n-1) + 10^(n-1)*(4-(a(n-1)/2^(n-1) % 2))); \\ _Michel Marcus_, Apr 07 2017

%Y Cf. A050620, A050621, A050622, A023402.

%K nonn,base

%O 1,1

%A _J. Lowell_

%E Corrected and extended by _Patrick De Geest_, Jun 15 1999

%E More terms from _Henry Bottomley_, Feb 14 2000