login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144446
Array t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k), with t(1, k) = 1, t(2, k) = 2, read by antidiagonals.
2
1, 2, 1, 7, 2, 1, 30, 10, 2, 1, 157, 64, 13, 2, 1, 972, 532, 110, 16, 2, 1, 6961, 5448, 1249, 168, 19, 2, 1, 56660, 66440, 17816, 2416, 238, 22, 2, 1, 516901, 941056, 306619, 44160, 4141, 320, 25, 2, 1, 5225670, 15189776, 6185828, 981184, 92292, 6532, 414, 28, 2, 1
OFFSET
1,2
LINKS
FORMULA
T(n, k) = t(n-k+1, k), where t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k) with t(1, k) = 1, t(2, k) = 2.
T(n, 1) = A001053(n+1).
T(n, k) = (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k) with T(n, n-1) = 2, T(n, n) = 1 (as a triangle). - G. C. Greubel, Mar 05 2022
EXAMPLE
Array t(n,k) begins as:
1, 1, 1, 1, 1, 1, ...;
2, 2, 2, 2, 2, 2, ...;
7, 10, 13, 16, 19, 22, ...;
30, 64, 110, 168, 238, 320, ...;
157, 532, 1249, 2416, 4141, 6532, ...;
972, 5448, 17816, 44160, 92292, 171752, ...;
Antidiagonal triangle T(n,k) begins as:
1;
2, 1;
7, 2, 1;
30, 10, 2, 1;
157, 64, 13, 2, 1;
972, 532, 110, 16, 2, 1;
6961, 5448, 1249, 168, 19, 2, 1;
56660, 66440, 17816, 2416, 238, 22, 2, 1;
516901, 941056, 306619, 44160, 4141, 320, 25, 2, 1;
5225670, 15189776, 6185828, 981184, 92292, 6532, 414, 28, 2, 1;
MATHEMATICA
t[n_, k_]:= t[n, k]= If[n<3, n, (k*(n-1) +2-k)*t[n-1, k] + k*t[n-2, k]];
T[n_, k_]:= t[n-k+1, k];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 05 2022 *)
PROG
(Magma)
function T(n, k) // triangle form; A144446
if k gt n-2 then return n-k+1;
else return (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k);
end if; return T;
end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2022
(Sage)
def t(n, k): return n if(n<3) else (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k)
def A144446(n, k): return t(n-k+1, k)
flatten([[A144446(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 05 2022
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Mar 05 2022
STATUS
approved