login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k), with t(1, k) = 1, t(2, k) = 2, read by antidiagonals.
2

%I #11 Mar 06 2022 04:48:06

%S 1,2,1,7,2,1,30,10,2,1,157,64,13,2,1,972,532,110,16,2,1,6961,5448,

%T 1249,168,19,2,1,56660,66440,17816,2416,238,22,2,1,516901,941056,

%U 306619,44160,4141,320,25,2,1,5225670,15189776,6185828,981184,92292,6532,414,28,2,1

%N Array t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k), with t(1, k) = 1, t(2, k) = 2, read by antidiagonals.

%H G. C. Greubel, <a href="/A144446/b144446.txt">Antidiagonals n = 1..50, flattened</a>

%F T(n, k) = t(n-k+1, k), where t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k) with t(1, k) = 1, t(2, k) = 2.

%F T(n, 1) = A001053(n+1).

%F T(n, k) = (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k) with T(n, n-1) = 2, T(n, n) = 1 (as a triangle). - _G. C. Greubel_, Mar 05 2022

%e Array t(n,k) begins as:

%e 1, 1, 1, 1, 1, 1, ...;

%e 2, 2, 2, 2, 2, 2, ...;

%e 7, 10, 13, 16, 19, 22, ...;

%e 30, 64, 110, 168, 238, 320, ...;

%e 157, 532, 1249, 2416, 4141, 6532, ...;

%e 972, 5448, 17816, 44160, 92292, 171752, ...;

%e Antidiagonal triangle T(n,k) begins as:

%e 1;

%e 2, 1;

%e 7, 2, 1;

%e 30, 10, 2, 1;

%e 157, 64, 13, 2, 1;

%e 972, 532, 110, 16, 2, 1;

%e 6961, 5448, 1249, 168, 19, 2, 1;

%e 56660, 66440, 17816, 2416, 238, 22, 2, 1;

%e 516901, 941056, 306619, 44160, 4141, 320, 25, 2, 1;

%e 5225670, 15189776, 6185828, 981184, 92292, 6532, 414, 28, 2, 1;

%t t[n_, k_]:= t[n, k]= If[n<3, n, (k*(n-1) +2-k)*t[n-1,k] + k*t[n-2,k]];

%t T[n_, k_]:= t[n-k+1,k];

%t Table[T[n, k], {n, 12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 05 2022 *)

%o (Magma)

%o function T(n,k) // triangle form; A144446

%o if k gt n-2 then return n-k+1;

%o else return (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k);

%o end if; return T;

%o end function;

%o [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 05 2022

%o (Sage)

%o def t(n,k): return n if(n<3) else (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k)

%o def A144446(n,k): return t(n-k+1,k)

%o flatten([[A144446(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 05 2022

%Y Cf. A144431, A144432, A144435, A144436, A144438, A144439, A144440, A144441, A144442, A144443, A144444, A144445, A144447.

%Y Cf. A001053.

%K nonn,tabl

%O 1,2

%A _Roger L. Bagula_ and _Gary W. Adamson_, Oct 05 2008

%E Edited by _G. C. Greubel_, Mar 05 2022