login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144440
Triangle T(n,k) by rows: T(n, k) = (3*n-3*k+1)*T(n-1, k-1) +(3*k-2)*T(n-1, k) + 3*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
8
1, 1, 1, 1, 11, 1, 1, 54, 54, 1, 1, 229, 789, 229, 1, 1, 932, 7975, 7975, 932, 1, 1, 3747, 68628, 161867, 68628, 3747, 1, 1, 15010, 543144, 2534759, 2534759, 543144, 15010, 1, 1, 60065, 4098439, 34243778, 66389335, 34243778, 4098439, 60065, 1
OFFSET
1,5
FORMULA
T(n, k) = (3*n-3*k+1)*T(n-1, k-1) +(3*k-2)*T(n-1, k) + 3*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = s(n), where s(n) = (3*n-4)*s(n-1) + 3*s(n-2), s(1) = 1, s(2) = 2.
From G. C. Greubel, Mar 03 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = (1/3)*(11*4^(n-2) - (3*n+2)).
T(n, 3) = (1/18)*(9*n^2 + 3*n - 11 - 22*4^(n-3)*(12*n-1) + 709*7^(n-3)). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 11, 1;
1, 54, 54, 1;
1, 229, 789, 229, 1;
1, 932, 7975, 7975, 932, 1;
1, 3747, 68628, 161867, 68628, 3747, 1;
1, 15010, 543144, 2534759, 2534759, 543144, 15010, 1;
1, 60065, 4098439, 34243778, 66389335, 34243778, 4098439, 60065, 1;
MATHEMATICA
T[n_, k_, m_, j_]:= T[n, k, m, j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m, j] + (m*(k-1)+1)*T[n-1, k, m, j] + j*T[n-2, k-1, m, j] ];
Table[T[n, k, 3, 3], {n, 15}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
PROG
(Sage)
def T(n, k, m, j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m, j) + (m*(k-1)+1)*T(n-1, k, m, j) + j*T(n-2, k-1, m, j)
def A144440(n, k): return T(n, k, 3, 3)
flatten([[A144440(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved