login
A124392
A Fine number related number triangle.
1
1, 2, 1, 7, 2, 1, 24, 8, 2, 1, 86, 28, 9, 2, 1, 314, 103, 32, 10, 2, 1, 1163, 382, 121, 36, 11, 2, 1, 4352, 1432, 456, 140, 40, 12, 2, 1, 16414, 5408, 1732, 536, 160, 44, 13, 2, 1, 62292, 20546, 6608, 2064, 622, 181, 48, 14, 2, 1, 237590, 78436, 25314, 7960, 2429, 714, 203, 52, 15, 2, 1
OFFSET
0,2
COMMENTS
First column is A014300. Second column is A114590. Row sums are A001700. Array is given by (f(x)/(x*sqrt(1-4x)), f(x)) where f(x) is g.f. of Fine numbers A000957.
FORMULA
Riordan array ( 1/(x*sqrt(1-4*x)) * (1-sqrt(1-4*x))/(3-sqrt(1-4*x), (1-sqrt(1-4*x))/(3-sqrt(1-4*x)) ).
Number triangle T(n, k) = Sum_{j=0..n-k} C(n-j, k)*C(2*j, n-k).
EXAMPLE
Triangle begins
1;
2, 1;
7, 2, 1;
24, 8, 2, 1;
86, 28, 9, 2, 1;
314, 103, 32, 10, 2, 1;
1163, 382, 121, 36, 11, 2, 1;
4352, 1432, 456, 140, 40, 12, 2, 1;
16414, 5408, 1732, 536, 160, 44, 13, 2, 1;
MAPLE
seq(seq( add(binomial(n-j, k)*binomial(2*j, n-k), j=0..n-k), k=0..n), n=0..10); # G. C. Greubel, Dec 25 2019
MATHEMATICA
Table[Sum[Binomial[n-j, k]*Binomial[2*j, n-k], {j, 0, n-k}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 25 2019 *)
PROG
(PARI) T(n, k) = sum(j=0, n-k, binomial(n-j, k)*binomial(2*j, n-k)); \\ G. C. Greubel, Dec 25 2019
(Magma) [(&+[Binomial(n-j, k)*Binomial(2*j, n-k): j in [0..n-k]]): k in [0..n], n in [0.10]]; // G. C. Greubel, Dec 25 2019
(Sage) [[sum(binomial(n-j, k)*binomial(2*j, n-k) for j in (0..n-k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 25 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> Binomial(n-j, k)*Binomial(2*j, n-k) ))); # G. C. Greubel, Dec 25 2019
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Oct 30 2006
STATUS
approved