login
A341738
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k-1} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin(2*b*Pi/k)^2) ).
3
1, 2, 1, 7, 2, 1, 16, 25, 2, 1, 41, 72, 112, 2, 1, 98, 361, 400, 529, 2, 1, 239, 1250, 4961, 2312, 2527, 2, 1, 576, 5041, 25088, 77841, 13456, 12100, 2, 1, 1393, 18432, 200999, 559682, 1270016, 78408, 57967, 2, 1
OFFSET
1,2
FORMULA
If k is odd, T(n,k) = A341533(n,k)/2.
EXAMPLE
Square array begins:
1, 2, 7, 16, 41, 98, ...
1, 2, 25, 72, 361, 1250, ...
1, 2, 112, 400, 4961, 25088, ...
1, 2, 529, 2312, 77841, 559682, ...
1, 2, 2527, 13456, 1270016, 12771458, ...
1, 2, 12100, 78408, 20967241, 292820000, ...
PROG
(PARI) default(realprecision, 120);
T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k-1, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin(2*b*Pi/k)^2))));
CROSSREFS
Main diagonal gives A341782.
Sequence in context: A335405 A369924 A347800 * A128747 A205945 A124392
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Feb 18 2021
STATUS
approved