login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341738
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k-1} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin(2*b*Pi/k)^2) ).
3
1, 2, 1, 7, 2, 1, 16, 25, 2, 1, 41, 72, 112, 2, 1, 98, 361, 400, 529, 2, 1, 239, 1250, 4961, 2312, 2527, 2, 1, 576, 5041, 25088, 77841, 13456, 12100, 2, 1, 1393, 18432, 200999, 559682, 1270016, 78408, 57967, 2, 1
OFFSET
1,2
FORMULA
If k is odd, T(n,k) = A341533(n,k)/2.
EXAMPLE
Square array begins:
1, 2, 7, 16, 41, 98, ...
1, 2, 25, 72, 361, 1250, ...
1, 2, 112, 400, 4961, 25088, ...
1, 2, 529, 2312, 77841, 559682, ...
1, 2, 2527, 13456, 1270016, 12771458, ...
1, 2, 12100, 78408, 20967241, 292820000, ...
PROG
(PARI) default(realprecision, 120);
T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k-1, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin(2*b*Pi/k)^2))));
CROSSREFS
Main diagonal gives A341782.
Sequence in context: A335405 A369924 A347800 * A128747 A205945 A124392
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Feb 18 2021
STATUS
approved