login
A341533
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin((2*b-1)*Pi/k)^2) ).
10
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 256, 224, 1156, 2, 200, 722, 2916, 1058, 6728, 2, 478, 2916, 9922, 38416, 5054, 39204, 2, 1156, 10082, 80000, 155682, 527076, 24200, 228488, 2, 2786, 38416, 401998, 2775556, 2540032, 7311616, 115934, 1331716, 2
OFFSET
1,1
EXAMPLE
Square array begins:
2, 8, 14, 36, 82, 200, ...
2, 36, 50, 256, 722, 2916, ...
2, 200, 224, 2916, 9922, 80000, ...
2, 1156, 1058, 38416, 155682, 2775556, ...
2, 6728, 5054, 527076, 2540032, 105125000, ...
2, 39204, 24200, 7311616, 41934482, 4115479104, ...
PROG
(PARI) default(realprecision, 120);
T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin((2*b-1)*Pi/k)^2))));
CROSSREFS
Main diagonal gives A341535.
Cf. A340475.
Sequence in context: A222828 A222842 A098471 * A341741 A074723 A286455
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Feb 13 2021
STATUS
approved